Lecture 16 (Section 3.3) Similarity

Example Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $v \to Av$, where

$$A = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix}$$

Let \mathcal{B} be the (ordered) basis of \mathbb{R}^3 with elements

$$b_1=\left[egin{array}{c}1\0\4\end{array}
ight],\;b_2=\left[egin{array}{c}2\-1\0\end{array}
ight],\;b_3=\left[egin{array}{c}4\0\2\end{array}
ight]$$

What is the matrix A' of T with respect to B?

The columns of A' have the \mathcal{B} -coordinates of $T(b_1)$, $T(b_2)$ and $T(b_3)$.

\mathcal{B} -coordinates of $T(b_i)$

$$T(b_{1}) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix} = 2b_{1} \Longrightarrow [T(b_{1})]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

$$T(b_{2}) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \\ 0 \end{bmatrix} = -3b_{2} \Longrightarrow [T(b_{2})]_{\mathcal{B}} = \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix}$$

$$T(b_{3}) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 5 & -1 \\ -4 & -8 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -7 \\ 14 \end{bmatrix} = 7b_{3} \Longrightarrow [T(b_{3})]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 0 \\ 7 \end{bmatrix}$$

The matrix of T with respect to \mathcal{B}' is

$$A' = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{array} \right].$$

This means: for any $v \in \mathbb{R}^3$,

$$[T(v)]_{\mathcal{B}} = A'[v]_{\mathcal{B}}.$$

Change of basis again

We consider the relationship between A and A' from another viewpoint. Let P be the matrix with the basis vectors from \mathcal{B} as columns. From Section 3.1, we know that P^{-1} is the change of basis matrix from the standard basis to \mathcal{B} . This means that for any element v of \mathbb{R}^3 , its \mathcal{B} -coordinate are given by the matrix-vector product

$$[v]_{\mathcal{B}} = P^{-1}v.$$

Equivalently, if we start with the \mathcal{B} -coordinates, then the standard coordinates of v are given by

$$v = P[v]_{\mathcal{B}}.$$

So P itself is the change of basis matrix from \mathcal{B} to the standard basis.

Similarity

Suppose we only knew about A (and had not already calculated A'). We have a basis \mathcal{B} whose columns form the matrix P. To figure out the matrix of T with respect to \mathcal{B} :

- 1 Start with an element of \mathbb{R}^3 , written in its \mathcal{B} -coordinates: $[v]_{\mathcal{B}}$
- 2 Convert the vector to its standard coordinates (so that we can apply T by multiplying by A): this means taking the product $P[v]_{\mathcal{B}}$
- Now apply T: this means taking the product $AP[v]_{\mathcal{B}}$. This vector has the standard coordinates of T(v).
- To convert this to \mathcal{B} -coordinates, apply the change of basis matrix from standard to \mathcal{B} , which is P^{-1} : this means taking the product $P^{-1}AP[v]_{\mathcal{B}}$. This vector has the \mathcal{B} -coordinates of T(v).
- Conclusion: For any element v of \mathbb{R}^3 , the \mathcal{B} -coordinates of T(v) are given by $(P^{-1}AP)[v]_{\mathcal{B}}$.

Similar Matrices

Definition Let \mathbb{F} be a field. Two matrices A and B in $M_n(\mathbb{F})$ are similar if there exists an invertible matrix $P \in M_n(\mathbb{F})$ for which $B = P^{-1}AP$.

Notes

- 1 Two distinct matrices in $M_n(\mathbb{F})$ are similar if and only if they represent the same linear transformation from \mathbb{F}^n to \mathbb{F}^n , with respect to different bases.
- It is not generally easy to tell by glancing at a pair of square matrices whether they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
- 3 Similar matrices also have some other features in common, such as having the same determinant (more on that later).

Similar matrices have the same trace

Lemma Let $A, B \in M_n(\mathbb{F})$. Then trace(AB) = trace(BA).

Consequence: For any square matrix A and any invertible matrix P, both in $M_n(\mathbb{F})$,

$$trace(P^{-1}AP) = trace(AP)P^{-1} = traceA$$
,

so similar matrices always have the same trace.

Diagonalizability

In the example, we found that the 3×3 matrix A is similar to the diagonal matrix A' = diag(2, -3, 7). We say that A is diagonalizable, which means that it is similar to a diagonal matrix.

If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is left multiplication by A, then A' is the matrix of T with respect to the basis $\mathcal{B} = (b_1, b_2, b_3)$, and the basis elements b_1, b_2, b_3 are the columns of the matrix P for which $P^{-1}AP = A'$.

Two equivalent interpretations

- 11 From the diagonal form of A' we have $T(b_1) = 2b_1$, $T(b_2) = -3b_2$ and $T(b_3) = 7b_3$. This means that each of the basis elements b_1 , b_2 , b_3 is mapped by T to a scalar multiple of itself each of them is an *eigenvector* of T.
- We can rearrange the version $P^{-1}AP = A'$ to AP = PA'. Bearing in mind that $P = \begin{bmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{bmatrix}$ and that A' = diag(2, -3, 7), this is saying that

$$A\begin{bmatrix} & | & & | & & | \\ b_1 & b_2 & b_3 & | & \end{bmatrix} = \begin{bmatrix} | & & | & & | \\ b_1 & b_2 & b_3 & | & \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{bmatrix} \Longrightarrow \begin{bmatrix} | & & | & & | \\ Ab_1 & Ab_2 & Ab_3 & | & | \\ | & & & & | & & | \end{bmatrix} = \begin{bmatrix} | & & | & & | \\ 2b_1 & -3b_2 & 7b_3 & | & | \\ | & & & & | & & | \end{bmatrix}$$

This means that $Ab_1 = 2b_1$, $Ab_2 = -3b_2$ and $Ab_3 = 7b_3$, so that $\mathcal{B} = \{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 consisting of *eigenvectors* of A.

Eigenvectors

Definition Let $T: V \to V$ be a linear transformation from a vector space V to itself. An eigenvector of T is a non-zero element v of V for which $T(v) = \lambda v$ for some scalar λ (called the eigenvalue of T to which v corresponds).

In this situation, T can be represented by a diagonal matrix if and only if V has a basis consisting of eigenvectors of T.

Definition (Matrix Version). Let $A \in M_n(\mathbb{F})$. An eigenvector of A is a non-zero vector $v \in \mathbb{F}^n$ for which $Av = \lambda v$ for a scalar λ (called the eigenvalue of A to which v corresponds).

The matrix A is diagonalizable (similar to a diagonal matrix) if and only if there is a basis of \mathbb{F}^n consisting of eigenvectors of A.

Section 3.4: Eigenvectors

Definition Let $T: V \to V$ be a linear transformation from a vector space V to itself. An eigenvector of T is a non-zero element v of V for which $T(v) = \lambda v$ for some scalar λ (called the eigenvalue of T to which v corresponds).

In this situation, T can be represented by a diagonal matrix if and only if V has a basis consisting of eigenvectors of T.

Definition (Matrix Version). Let $A \in M_n(\mathbb{F})$. An eigenvector of A is a non-zero vector $v \in \mathbb{F}^n$ for which $Av = \lambda v$ for a scalar λ (called the eigenvalue of A to which v corresponds).

The matrix A is diagonalizable (similar to a diagonal matrix) if and only if there is a basis of \mathbb{F}^n consisting of eigenvectors of A.

Working with eigenvectors

Given $A \in M_n(\mathbb{F})$ and $v \in \mathbb{F}^n$, it is straightforward task to determine whether v is an eigenvector of A.

Example Show that $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} -2 & 9 \\ 8 & 4 \end{bmatrix}$ and find the corresponding eigenvalue.

$$\begin{bmatrix} -2 & 9 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \end{bmatrix} = 10 \begin{bmatrix} 3 \\ 4 \end{bmatrix}.$$

The corresponding eigenvalue is 10.