1 An inner product $\langle\cdot, \cdot\rangle: V \rightarrow \mathbb{R}$ on a real vector space V satisfies
■ $\langle u, v\rangle=\langle v, u\rangle$ for all $u, v \in V$.

- Bilinearity
$\square\langle v, v\rangle \geq 0$ for all $v \in V($ and $=0$ only if $v=0)$.
2 Example: The ordinary scalar product on \mathbb{R}^{n}
3 Length: $\|v\|=\sqrt{\langle v, v\rangle}$
Distance: $d(u, v)=\|u-v\|$
Orthogonality: $u \perp v \Longleftrightarrow\langle u, v\rangle=0$.
4 Projection: for a pair of vectors u and v (with $u \neq 0$),

$$
\operatorname{proj}_{u} v=\frac{\langle u, v\rangle}{\langle u, u\rangle} u .
$$

Then $v-\operatorname{proj}_{u} v$ is orthogonal to u, and $\operatorname{proj}_{u} v$ is the nearest scalar multiple of u to v.

Orthogonal Bases (the Gram-Schmidt process)

Let V be a finite-dimensional inner product space, with a given basis $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$.
A basis \mathcal{B} is called orthogonal if its elements are all orthogonal to each other.
We can adjust \mathcal{B} to an orthogonal basis $\mathcal{B}^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$ as follows.
1 Write $v_{1}=b_{1}$.
2 Write $v_{2}=b_{2}-\operatorname{proj}_{v_{1}}\left(b_{2}\right)=b_{2}-\frac{\left\langle v_{1}, b_{2}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}$.
Then the pairs b_{1}, b_{2} and v_{1}, v_{2} span the same space, and $v_{1} \perp v_{2}$.
3 Write $v_{3}=b_{3}-\operatorname{proj}_{v_{1}}\left(b_{3}\right)-\operatorname{proj}_{v_{2}}\left(b_{3}\right)$.
Then the sets v_{1}, v_{2}, v_{3} and b_{1}, b_{2}, b_{3} span the same space, and v_{3} is orthogonal to both v_{1} and v_{2}.
To see this note that

$$
\left\langle v_{1}, v_{3}\right\rangle=\left\langle v_{1}, b_{3}\right\rangle-\frac{\left\langle v_{1}, b_{3}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle}\left\langle v_{1}, v_{1}\right\rangle-c\left\langle v_{1}, v_{2}\right\rangle
$$

4 Continue in this way - at the k th step, form v_{k} by subtracting from b_{k} its projections on each of v_{1}, \ldots, v_{n}.

Orthogonal projection on a subspace

The result of this process is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ whose elements satisfy

$$
\left\langle v_{i}, v_{j}\right\rangle=0 \text { for } i \neq j
$$

We can adjust this basis to a orthonormal basis (consisting of orthogonal unit vectors) by replacing each v_{i} with its normalization \hat{v}_{i}. From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an orthogonal (or orthonormal) basis.

Now let W be a subspace of V, and let $v \in V$. The orthogonal projection of v on W, denoted $\operatorname{proj}_{W}(v)$, is defined to be the unique element u of W for which

$$
v=u+v^{\prime}
$$

and $v^{\prime} \perp w$ for all $w \in W$.

How to calculate a projection from an orthogonal basis

That $\operatorname{proj}_{w}(v)$ exists follows from the fact that an orthogonal basis $\left\{b_{1}, \ldots, b_{k}\right\}$ of W may be extended to an orthogonal basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{k}, c_{k+1}, \ldots, c_{n}\right\}$ of W. Then v has a unique expression of the form

$$
v=a_{1} b_{1}+\cdots+a_{k} b_{k}+a_{k+1} c_{k+1}+\cdots+a_{n} c_{n}, \text { for scalars } a_{i},
$$

and $\operatorname{proj}_{W}(v)=a_{1} b_{1}+\cdots+a_{k} b_{k}$.
Moreover, taking inner products with b_{i} gives $\left\langle v, b_{i}\right\rangle=a_{i}\left\langle b_{i}, b_{i}\right\rangle$, so that

$$
\operatorname{proj}_{w}(v)=\sum_{i=1}^{k} \frac{\left\langle v, b_{i}\right\rangle}{\left\langle b_{i}, b_{i}\right\rangle} b_{i}
$$

where $\left\{b_{1}, \ldots, b_{k}\right\}$ is an orthogonal basis of W.

Let $u=\operatorname{proj}_{W}(v)$ and let w be any element of W. Then

$$
\begin{aligned}
d(v, w)^{2} & =\langle v-w, v-w\rangle \\
& =\langle(v-u)+(u-w),(v-u)+(u-w)\rangle \\
& =\langle v-u, v-u\rangle+2\langle v-u, u-w\rangle+\langle u-w, u-w\rangle \\
& =\langle v-u, v-u\rangle+\langle u-w, u-w\rangle \\
& \geq d(v, u)^{2},
\end{aligned}
$$

with equality only if $w=\operatorname{proj}_{w}(v)$.
Example $\ln \mathbb{R}^{3}$, find the unique point of the plane $x+2 y-z=0$ that is nearest to the point $(1,2,2)$.

Application: least squares for overdetermined systems

Example Consider the following overdetermined linear system.

$$
\begin{aligned}
2 x+y & =3 \\
x-y & =0 \\
x-3 y & =-4
\end{aligned} \quad\left[\begin{array}{rr}
2 & 1 \\
1 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
3 \\
0 \\
-4
\end{array}\right]
$$

This system has three equations and only two variables. It is inconsistent and overdetermined - each pair of equations has a simultaneous solution, but all three do not.

Overdetermined systems arise quite often in applications, from observed data. Even if they do not have exact solutions, approximate solutions are of interest.

The least squares method

For a vector $b \in \mathbb{R}^{3}$, the system

$$
\underbrace{\left[\begin{array}{rr}
2 & 1 \\
1 & -1 \\
1 & -3
\end{array}\right]}_{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]=b
$$

has a solution if and only if b belongs to the 2-dimensional linear span W of the columns of the coefficient matrix $A: v_{1}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{r}1 \\ -1 \\ -3\end{array}\right]$. If not, then the nearest element of W to B is $b^{\prime}=\operatorname{proj}_{W}(b)$, and our approximate solutions for x and y are the entries of the vector c in \mathbb{R}^{2} for which $A c=b^{\prime}$. We know that $b^{\prime}-b$ is orthogonal to v_{1} and v_{2}, which are the rows of A^{T}. Hence

$$
A^{T}\left(b^{\prime}-b\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow A^{T} b^{\prime}=A^{T} A c=A^{T} b \Longrightarrow c=\left(A^{T} A\right)^{-1} A^{T} b
$$

Example

In our example,

$$
\left[\begin{array}{rr}
2 & 1 \\
1 & -1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
3 \\
0 \\
-4
\end{array}\right]
$$

$A=\left[\begin{array}{rr}2 & 1 \\ 1 & -1 \\ 1 & -3\end{array}\right], \quad A^{T}=\left[\begin{array}{rrr}2 & 1 & 1 \\ 1 & -1 & -3\end{array}\right], \quad A^{T} A=\left[\begin{array}{rr}6 & -2 \\ -2 & 11\end{array}\right], \quad A^{T} b=\left[\begin{array}{r}2 \\ 15\end{array}\right]$.
The least squares solution is given by

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=c=\left(A^{T} A\right)^{-1} A^{T} b=\frac{1}{62}\left[\begin{array}{rr}
11 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{r}
2 \\
15
\end{array}\right]=\left[\begin{array}{l}
\frac{26}{31} \\
\frac{47}{31}
\end{array}\right] .
$$

