
Recall from Week 11

1 An inner product �·, ·� : V → R on a real vector space V satisfies

�u, v� = �v , u� for all u, v ∈ V .
Bilinearity
�v , v� ≥ 0 for all v ∈ V (and = 0 only if v = 0).

2 Example: The ordinary scalar product on Rn

3 Length: ||v || =
�

�v , v�
Distance: d(u, v) = ||u − v ||
Orthogonality: u ⊥ v ⇐⇒ �u, v� = 0.

4 Projection: for a pair of vectors u and v (with u �= 0),

proju v =
�u, v�
�u, u�u.

Then v − proju v is orthogonal to u, and proju v is the nearest scalar
multiple of u to v .
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Orthogonal Bases (the Gram-Schmidt process)

Let V be a finite-dimensional inner product space, with a given basis
B = {b1, b2, ... bn}.
A basis B is called orthogonal if its elements are all orthogonal to each
other.
We can adjust B to an orthogonal basis B� = {v1, ... , vn} as follows.

1 Write v1 = b1.

2 Write v2 = b2 − projv1(b2) = b2 −
�v1, b2�
||v1||2

v1.

Then the pairs b1, b2 and v1, v2 span the same space, and v1 ⊥ v2.
3 Write v3 = b3 − projv1(b3)− projv2(b3).

Then the sets v1, v2, v3 and b1, b2, b3 span the same space, and v3 is
orthogonal to both v1 and v2.
To see this note that

�v1, v3� = �v1, b3� −
�v1, b3�
�v1, v1�

�v1, v1� − c✘✘✘✘�v1, v2�

4 Continue in this way - at the kth step, form vk by subtracting from
bk its projections on each of v1, ... , vn.
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Orthogonal projection on a subspace

The result of this process is a basis {v1, ... , vn} whose elements satisfy

�vi , vj� = 0 for i �= j

We can adjust this basis to a orthonormal basis (consisting of orthogonal
unit vectors) by replacing each vi with its normalization v̂i .
From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V , and let v ∈ V . The orthogonal
projection of v on W , denoted projW (v), is defined to be the unique
element u of W for which

v = u + v �,

and v � ⊥ w for all w ∈ W .
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How to calculate a projection from an orthogonal basis

That projW (v) exists follows from the fact that an orthogonal basis
{b1, ... , bk} of W may be extended to an orthogonal basis
B = {b1, ... , bk , ck+1, ... , cn} of W . Then v has a unique expression of
the form

v = a1b1 + · · ·+ akbk + ak+1ck+1 + · · ·+ ancn, for scalars ai ,

and projW (v) = a1b1 + · · ·+ akbk .
Moreover, taking inner products with bi gives �v , bi � = ai �bi , bi �, so that

projW (v) =
k�

i=1

�v , bi �
�bi , bi �

bi ,

where {b1, ... , bk} is an orthogonal basis of W .
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projW (v) is the nearest point of W to v

Let u = projW (v) and let w be any element of W . Then

d(v ,w)2 = �v − w , v − w�
= �(v − u) + (u − w), (v − u) + (u − w)�
= �v − u, v − u�+✭✭✭✭✭✭✭✭

2�v − u, u − w�+ �u − w , u − w�
= �v − u, v − u�+ �u − w , u − w�
≥ d(v , u)2,

with equality only if w = projW (v).

Example In R3, find the unique point of the plane x + 2y − z = 0 that is
nearest to the point (1, 2, 2).
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Application: least squares for overdetermined systems

Example Consider the following overdetermined linear system.

2x + y = 3
x − y = 0
x − 3y = −4



2 1
1 −1
1 −3



�
x
y

�
=




3
0

−4




This system has three equations and only two variables. It is inconsistent
and overdetermined - each pair of equations has a simultaneous solution,
but all three do not.

Overdetermined systems arise quite often in applications, from observed
data. Even if they do not have exact solutions, approximate solutions are
of interest.
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The least squares method

For a vector b ∈ R3, the system


2 1
1 −1
1 −3




� �� �
A

�
x
y

�
= b

has a solution if and only if b belongs to the 2-dimensional linear span W

of the columns of the coefficient matrix A: v1 =



2
1
1


 and v2 =




1
−1
−3


.

If not, then the nearest element of W to B is b� = projW (b), and our
approximate solutions for x and y are the entries of the vector c in R2

for which Ac = b�. We know that b� − b is orthogonal to v1 and v2,
which are the rows of AT . Hence

AT (b� − b) =

�
0
0

�
=⇒ ATb� = ATAc = ATb =⇒ c = (ATA)−1ATb
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Example

In our example, 

2 1
1 −1
1 −3



�
x
y

�
=




3
0

−4




A =



2 1
1 −1
1 −3


 , AT =

�
2 1 1
1 −1 −3

�
, ATA =

�
6 −2

−2 11

�
, ATb =

�
2

15

�
.

The least squares solution is given by

�
x
y

�
= c = (ATA)−1ATb =

1

62

�
11 2
2 6

� �
2

15

�
=




26
31

47
31


 .
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