
Recall from Week 10

The characteristic polynomial of a square matrix A is det(λI − A).

Its roots are the values of λ for which the equation Av = λv is
satisfied by a non-zero vector v .

We were in the process of describing how a 3× 3 determinant can
be calculated from the equation

A× adj(A) = det(A)I .
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The 3× 3 case

The version of the above equation for a 3× 3 matrix A =



a b c
d e f
g h i


 is:



a b c
d e f
g h i






ei − fh −bi + ch bf − ce
−di + fg ai − cg −af + cd
dh − eg −ah + bg ae − bd




� �� �
adj(A)

= (aei − afh − bdi + bfg + cdh − ceg� �� �
det(A)

)I3.

Definitions

The minor Mi ,j of the (i , j)-entry of A is the determinant of the 2×2
matrix that remains when Row i and Column j are deleted from A.

The cofactor Ci ,j is either Mi ,j or −Mi ,j , according to


+ − +
− + −
+ − +




The adjugate of A is has Cj ,i in the (i , j)-position. It is the
transpose of the matrix of cofactors of A.

The determinant A can be found by multiplying each entry of any
chosen row or column by its own cofactor, and adding the results.
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Determinant Properties

1 Each of the definitions above applies to n × n matrices in general,
and gives us a way to recursively define a n × n determinant, in
terms of (n − 1)× (n − 1) determinants.

2 The cofactor expansion method is not generally the most efficient
way to compute a determinant (it is ok in the 3× 3 case). But it
can be taken as the definition of a determinant.

3 In some special cases, the determinant is easier to compute. If A is
upper or lower triangular, then det(A) is the product of the entries
on the main diagonal of A. If A has a square k × k block A1 in the
upper left, a square (n − k)× (n − k) block in the lower right, and
only zeros in the lower left (n − k)× k region, then
det(A) = det(A1) det(A2).

4 For a pair of n × n matrices A and B, det(AB) = det(A) det(B).
This is the multplicative property of the determinant, or the
Cauchy-Binet formula. It is not obvious at all.
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The characteristic polynomial of a 3× 3 matrix

Example Using cofactor expansion by the first column, we find that the

characteristic polynomial of B =



5 6 2
0 −1 −8
1 0 −2


 is

det(λI3 − B) = det



λ− 5 −6 −2
0 λ+ 1 8
−1 0 λ+ 2




= (λ− 5) ((λ+ 1)(λ+ 2)− 0(8)) + (−1) ((−6)(8)− (λ+ 1)(

= (λ− 5)(λ2 + 3λ+ 2)− (2λ− 46)

= λ3 − 2λ2 − 15λ+ 36

= (λ− 3)(λ2 + λ− 12)

= (λ− 3)(λ+ 4)(λ− 3)

= (λ− 3)2(λ+ 4)
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Algebraic and Geometric Multiplicity

The eigenvalues of B are 3 (occurring twice as a root of the characteristic
polynomial), and −4 (occurring once). We say that 3 has algebraic
multplicity 2 and −4 has algebraic multiplicity 1 as an eigenvalue of B .
The geometric multplicity of each eigenvalue is the dimension of its
corresponding eigenspace.

3I3 − B =



−2 −6 −2
0 4 8

−1 0 5




The RREF of this matrix is



1 0 −5
0 1 2
0 0 0


 and the nullspace consists of all

vectors




5t
−2t

t


, where t ∈ R. This is the eigenspace of B corresponding

to λ = 3. It has dimension 1, so 3 has geometric multiplicity 1 as an
eigenvector of B.
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Algebraic and Geometric Multiplicity

Theorem The geometric multplicity of an eigenvalue is at most equal to
its algebraic multiplicity.

Proof: Suppose that µ has geometric multiplicity k as an eigenvalue of
the square matrix A ∈ Mn(R), and let {v1, ... , vk} be a basis for the
µ-eigenspace of A. Extend this to a basis B of Rn, and let P be the
matrix whose columns are the elements of B. Then the first k columns of
P−1AP have µ in the diagonal position and zeros elsewhere. It follows
that λ− µ occurs at least k times as a factor of det(λIn − P−1AP).

Corollary A matrix is diagonalizable if and only if the geometric
multiplicity of each of its eigenvalues is equal to the algebraic multiplicity.
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Chapter 4: Orthogonality, Projections and Inner Products

In R2, the scalar (or dot) product of the vectors x =
�x1
x2

�
and y =

�y1
y2

�
is

given by
x · y = x1y1 + x2y2 = xT y = yT x = y · x .

We can interpret the length ||x || of the vector x as the length of the
directed line segment from the origin to (x1, x2), which by the Theorem

of Pythagoras is
�
x21 + x22 or

√
x · x .

Once we have a concept of length of a vector, we can define the distance
d(x , y) between two vectors x and y as the length of their difference:
d(x , y) = ||x − y ||.
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Chapter 4: Orthogonality, Projections and Inner Products

In R2, the scalar (or dot) product of the vectors x =
�x1
x2

�
and y =

�y1
y2

�
is

given by
x · y = x1y1 + x2y2 = xT y = yT x = y · x .

Similarly, from the Cosine Rule we can observe that
x · y = ||x || ||y || cos θ, where θ is the angle between the directed line
segments representing x and y . In particular, x is orthogonal to y (or
x ⊥ y) if and only if x · y = 0.

So the scalar product encodes geometric information in R2, and it also
provides a mechanism for defining concepts of length, distance and
orthogonality on real vector spaces that do not necessarily have an
obvious geometric structure.
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Real Inner Products

Let V be a vector space over R. An inner product on V is a function
from V × V to R that assigns an element of R to every ordered pair of
elements of V , and has the following properties. We write �x , y� for the
inner product of x and y , and write the function as �·, ·� : V × V → R.

1 Symmetry: �x , y� = �y , x� for all x , y ∈ V

2 Linearity in both slots (bilinearity): For all x , y , z ∈ V and all
a, b ∈ R, we have �ax + by , z� = a�x , z�+ b�y , z� and
�x , ay + bz� = a�x , y�+ b�x , z�.

3 Non-negativity: �x , x� ≥ 0 for all x ∈ V , and �x , x� = 0 only if
x = 0V .

The ordinary scalar product on Rn is the best known example of an inner
product.
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Examples of inner products

1 The ordinary scalar product on Rn.

2 Let C be the vector space of all continuous real-valued functions on
the interval [0, 1]. The analogue of the ordinary scalar product on C
is the inner product given by

�f , g� =
� 1

0
f (x)g(x) dx , for f , g ∈ C .

3 On the space Mm×n(R), the Frobenius inner product or trace inner
product is defined by �A,B� = trace(ATB). Note that traceATB is
the sum over all positions (i , j) of the products AijBij . So this is
closely related to the ordinary scalar product, if the matrices A and
B were regarded as vectors with mn entries over R.

It is possible for a single vector space to have many different inner
products defined on it, and if there is any risk of ambiguity we need to
specify which one we are considering.
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Length, Distance and Orthogonality

Given a real vector space and equipped with an inner product �·, ·�, we
make the following two definitions.

Definition We define the length or norm of any vector v by

||v || =
�
�v , v�,

and we define the distance between the vectors u and v by

d(u, v) = ||u − v ||.

Definition We say that vectors u and v are orthogonal (with respect to
�·, ·�) if �u, v� = 0.

These definitions are consistent with “typical” geometrically motivated
concepts of distance and orthogonality.
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Unit Vectors and Scaling

An element v of V is referred to as a unit vector if ||v || = 1.
The norm of elements of V has the property that ||cv || = |c |z , ||v || for
any vector v and real scalar c . To see this we can note that

||cv || =
�
�cv , cv� =

�
c2�v , v� = c ||v ||.

So we can adjust the norm of any element of V , while preserving its
direction, by multplying it by a positive scalar.

Definition If v is a non-zero vector in an inner product space V , then

v̂ :=
1

||v ||v

is a unit vector in the same direction as v , referred to as the
normalization of v .
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Orthogonal Projection

Lemma Let u and v be non-zero vectors in an inner product space V .
Then it is possible to write (in a unique way) v = au + v �, where a is
scalar and v � is orthogonal to u.

If v is orthogonal to u, take a = 0 and v � = v .

If v is a scalar multiple of u, take au = v and v � = 0.

Otherwise, to solve for a and v � in the equation v = au + v � (with
u ⊥ v �), take the inner product with u on both sides. Then

�u, v� = a�u, u�+ 0 =⇒ a =
�u, v�
||u||2 , v � = v − �u, v�

||u||2 u.

We can verify directly that the two components in this expression
are orthogonal to each other.

Example In R2, write u =
�2
1

�
and v =

� 6
−2

�
.

Dr Rachel Quinlan MA283 Linear Algebra 117 / 124



Orthogonal projection of one vector on another

Definition

For non-zero vectors u and v in an inner product space V , the vector
�u, v�
||u||2 u is called the projection of v on the 1-dimensional space spanned

by u. It is denoted by proju(v) and it has the property that v − proju(v)
is orthogonal to u.

Lemma

proju(v) is the unique element of �u� whose distance from v is minimal.

Proof Let au be a scalar multiple of u. Then

d(au, v)2 = �au − v , au − v� = a2�u, u� − 2a�u, v�+ �v , v�

Regarded as a quadratic function of a, this has a minimum when its

derivative is 0, i.e. when 2a�u, u� − 2�u, v� = 0, when a =
�u, v�
||u||2 .
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Orthogonal Bases (the Gram-Schmidt process)

Let V be a finite-dimensional inner product space, with a given basis
B = {b1, b2, ... bn}.
A basis B is called orthogonal if its elements are all orthogonal to each
other.
We can adjust B to an orthogonal basis B� = {v1, ... , vn} as follows.

1 Write v1 = b1.

2 Write v2 = b2 − projv1(v2) = b2 −
�b1, b2�
||b1||2

b1.

Then the pairs b1, b2 and v1, v2 span the same space, and v1 ⊥ v2.
3 Write v3 = b3 − projv1(b3)− projv2(b3).

Then the sets v1, v2, v3 and b1, b2, b3 span the same space, and v3 is
orthogonal to both v1 and v2.
To see this note that

�v1, v3� = �v1, b3� −
�v1, b3�
�v1, v1�

�v1, v1� − c✘✘✘✘�v1, v2�

4 Continue in this way - at the kth step, form vk by subtracting from
bk its projections on each of v1, ... , vn.
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Orthogonal projection on a subspace

The result of this process is a basis {v1, ... , vn} whose elements satisfy

�vi , vj� = 0 for i �= j

We can adjust this basis to a orthonormal basis (consisting of orthogonal
unit vectors) by replacing each vi with its normalization v̂i .
From the Gram-Schmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V , and let v ∈ V . The orthogonal
projection of v on W , denoted projW (v), is defined to be the unique
element u of W for which

v = u + v �,

and v � ⊥ w for all w ∈ W .
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How to calculate a projection from an orthogonal basis

That projW (v) exists follows from the fact that an orthogonal basis
{b1, ... , bk} of W may be extended to an orthogonal basis
B = {b1, ... , bk , ck+1, ... , cn} of W . Then v has a unique expression of
the form

v = a1b1 + · · ·+ akbk + ak+1ck+1 + · · ·+ ancn, for scalars ai ,

and projW (v) = a1b1 + · · ·+ akbk .
Moreover, taking inner products with bi gives �v , bi � = ai �bi , bi �, so that

projW (v) =
k�

i=1

�v , bi �
�bi , bi �

bi ,

where {b1, ... , bk} is an orthogonal basis of W .
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projW (v) is the nearest point of W to v

Let u = projW (v) and let w be any element of W . Then

d(v ,w)2 = �v − w , v − w�
= �(v − u) + (u − w), (v − u) + (u − w)�
= �v − u, v − u�+✭✭✭✭✭✭✭✭

2�v − u, u − w�+ �u − w , u − w�
= �v − u, v − u�+ �u − w , u − w�
≥ d(v , u)2,

with equality only if w = projW (v).

Example In R3, find the unique point of the plane x + 2y − z = 0 that is
nearest to the point (1, 2, 2).
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