
Week 10: Recall from last week

1 If T : Rn → Rn is a linear transformation, an eigenvector of T is a
non-zero v ∈ Rn with the property that T (v) = λv for some λ ∈ R,
called the eigenvalue of T to which v corresponds.

2 If a basis B of Rn consists entirely of eigenvectors of T , then the
matrix of T with respect to B is diagonal, with the corresponding
eigenvalues as the diagonal entries.

3 Eigenvectors of T that correspond to distinct eigenvalues are linearly
independent in Rn. It follows that T can have at most n distinct
eigenvalues. If it has n distinct eigenvalues, then it is diagonalizable.

4 If the matrix of T with respect to the standard basis is A, then the
matrix of T with respect to another basis B is P−1AP , where the
columns of P are the basis elements of B.
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A note about (non)-diagonalizability

For A ∈ Mn(F), it does not always happen that Fn has a basis consisting
of eigenvectors of A.

Examples

1 The matrix A =

�
0 −1
1 0

�
is diagonalizable in M2(C) but not in

M2(R).

2 The matrix B =

�
1 1
0 1

�
is not diagonalizable even over C.
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Section 3.5 The characteristic polynomial

Example Find a matrix P with P−1AP diagonal, where A =

�
2 2
1 3

�

To answer this, we need to find two linearly independent eigenvectors of
A. These are non-zero solutions of
�
2 2
1 3

� �
x
y

�
= λ

�
x
y

�
=⇒ 2x + 2y = λx

x + 3y = λy
=⇒ 0 = (λ − 2)x − 2y

0 = −x + (λ − 3)y
=⇒

�
λ − 2 −2
−1 λ − 3

� �
x
y

�
=

�
0
0

�

So we are looking for non-zero solutions

�
x
y

�
of the system

�
λ− 2 −2
−1 λ− 3

� �
x
y

�
=

�
0
0

�

These can occur only if the coefficient matrix is non-invertible. If it is
invertible, the only solution is x = y = 0.
A 2× 2 matrix is non-invertible if and only if its determinant is 0.

det

�
λ− 2 −2
−1 λ− 3

�
= (λ− 2)(λ− 3)− (−2)(−1) = λ2 − 5λ+ 4.
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The Characteristic Polynomial of a 2× 2 matrix

The characteristic polynomial of A is

det(λI − A) = λ2 − 5λ+ 4 = (λ− 4)(λ− 1).

The eigenvalues of A are the solutions of the characteristic equation
det(λI −A) = 0, 1 and 4. The eigenspace of A corresponding to λ = 1 is
the set of all solutions of the system

�
2 2
1 3

� �
x
y

�
= 1

�
x
y

�
=⇒

�
1− 2 −2
−1 1− 3

� �
x
y

�
=

�
0
0

�

This is the nullspace of the matrix 1I − A =

�
−1 −2
−1 −2

�
, which is

��
−2t

t

�
, t ∈ R

�
.

An eigenvector of A for λ = 1 is any non-zero element of this space, for

example

�
−2
1

�
.
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Section 3.5 The Characteristic Polynomial

The characteristic polynomial of A =

�
a b
c d

�
is

det(λI2 − A) = (λ− a)(λ− d)− (−c)(−b) = λ2 − (a+ d)λ+ (ad − bc)

= (λ− λ1)(λ− λ2).

The sum of the eigenvalues λ1 and λ2 is a+ d , the trace of A.
The product of the eigenvalues λ1 and λ2 is ad − bc , the determinant of
A.

The eigenspace of A corresponding to λ1 is the nullspace of the matrix
λ1I2 − A. Its non-zero elements are the eigenvectors of A corresponding
to λ1.
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Section 3.5.1: The Determinant (a digression)

For any 2× 2 matrix A =

�
a b
c d

�
, we have

�
a b
c d

� �
d −b

−c a

�

� �� �
adj(A)

=

�
ad − bc 0

0 ad − bc

�
= (ad − bc� �� �

det(A)

)I2.

If ad − bc = 0, then A is not invertible.

If ad − bc �= 0, then the equation shows that

A−1 =
1

ad − bc

�
d −b

−c a

�
.

The matrix

�
d −b

−c a

�
is the adjugate of A.

The matrix A has an inverse if and only if ad − bc �= 0. This means
that the number ad − bc tells us whether or not the columns of A
form a basis of F2 (or R2). The number ad − bc is the determinant
of A.
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The 3× 3 case

The version of the above equation for a 3× 3 matrix A =



a b c
d e f
g h i


 is:



a b c
d e f
g h i






ei − fh −bi + ch bf − ce
−di + fg ai − cg −af + cd
dh − eg −ah + bg ae − bd




� �� �
adj(A)

= (aei − afh − bdi + bfg + cdh − ceg� �� �
det(A)

)I3.

Definitions

The minor Mi ,j of the (i , j)-entry of A is the determinant of the 2×2
matrix that remains when Row i and Column j are deleted from A.

The cofactor Ci ,j is either Mi ,j or −Mi ,j , according to


+ − +
− + −
+ − +




The adjugate of A is has Cj ,i in the (i , j)-position. It is the
transpose of the matrix of cofactors of A.

The determinant A can be found by multiplying each entry of any
chosen row or column by its own cofactor, and adding the results.
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The 3× 3 case

The version of the above equation for a 3× 3 matrix A =



a b c
d e f
g h i


 is:



a b c
d e f
g h i







����
e f
h i

���� −
����

b c
h i

����
����

b c
e f

����

−
����

d f
g i

����
����

a c
g i

���� −
����

a c
d f

����
����

d e
g h

���� −
����

a b
g h

����
����

a b
d e

����
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det(A)
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Determinant Properties

1 Each of the definitions above applies to n × n matrices in general,
and gives us a way to recursively define a n × n determinant, in
terms of (n − 1)× (n − 1) determinants.

2 The cofactor expansion method is not generally the most efficient
way to compute a determinant (it is ok in the 3× 3 case). But it
can be taken as the definition of a determinant.

3 In some special cases, the determinant is easier to compute. If A is
upper or lower triangular, then det(A) is the product of the entries
on the main diagonal of A. If A has a square k × k block A1 in the
upper left, a square (n − k)× (n − k) block in the lower right, and
only zeros in the lower left (n − k)× k region, then
det(A) = det(A1) det(A2).

4 For a pair of n × n matrices A and B, det(AB) = det(A) det(B).
This is the multplicative property of the determinant, or the
Cauchy-Binet formula. It is not obvious at all.
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The characteristic polynomial of a 3× 3 matrix

Example Using cofactor expansion by the first column, we find that the

characteristic polynomial of B =



5 6 2
0 −1 −8
1 0 −2


 is

det(λI3 − B) = det



λ− 5 −6 −2
0 λ+ 1 8
−1 0 λ+ 2




= (λ− 5) ((λ+ 1)(λ+ 2)− 0(8)) + (−1) ((−6)(8)− (λ+ 1)(

= (λ− 5)(λ2 + 3λ+ 2)− (2λ− 46)

= λ3 − 2λ2 − 15λ+ 36

= (λ− 3)(λ2 + λ− 12)

= (λ− 3)(λ+ 4)(λ− 3)

= (λ− 3)2(λ+ 4)
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Algebraic and Geometric Multiplicity

The eigenvalues of B are 3 (occurring twice as a root of the characteristic
polynomial), and −4 (occurring once). We say that 3 has algebraic
multplicity 2 and −4 has algebraic multiplicity 1 as an eigenvalue of B .
The geometric multplicity of each eigenvalue is the dimension of its
corresponding eigenspace.

3I3 − B =



−2 −6 −2
0 4 8

−1 0 5




The RREF of this matrix is



1 0 −5
0 1 2
0 0 0


 and the nullspace consists of all

vectors




5t
−2t

t


, where t ∈ R. This is the eigenspace of B corresponding

to λ = 3. It has dimension 1, so 3 has geometric multiplicity 1 as an
eigenvector of B.
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Algebraic and Geometric Multiplicity

Theorem The geometric multplicity of an eigenvalue is at most equal to
its algebraic multiplicity.

Proof: Suppose that µ has geometric multiplicity k as an eigenvalue of
the square matrix A ∈ Mn(R), and let {v1, ... , vk} be a basis for the
µ-eigenspace of A. Extend this to a basis B of Rn, and let P be the
matrix whose columns are the elements of B. Then the first k columns of
P−1AP have µ in the diagonal position and zeros elsewhere. It follows
that λ− µ occurs at least k times as a factor of det(λIn − P−1AP).

Corollary A matrix is diagonalizable if and only if the geometric
multiplicity of each of its eigenvalues is equal to the algebraic multiplicity.
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