Week 10: Recall from last week

11 If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation, an eigenvector of T is a non-zero $v \in \mathbb{R}^{n}$ with the property that $T(v)=\lambda v$ for some $\lambda \in \mathbb{R}$, called the eigenvalue of T to which v corresponds.
2 If a basis \mathcal{B} of \mathbb{R}^{n} consists entirely of eigenvectors of T, then the matrix of T with respect to \mathcal{B} is diagonal, with the corresponding eigenvalues as the diagonal entries.
3 Eigenvectors of T that correspond to distinct eigenvalues are linearly independent in \mathbb{R}^{n}. It follows that T can have at most n distinct eigenvalues. If it has n distinct eigenvalues, then it is diagonalizable.
4 If the matrix of T with respect to the standard basis is A, then the matrix of T with respect to another basis \mathcal{B} is $P^{-1} A P$, where the columns of P are the basis elements of \mathcal{B}.

A note about (non)-diagonalizability

For $A \in M_{n}(\mathbb{F})$, it does not always happen that \mathbb{F}^{n} has a basis consisting of eigenvectors of A.

Examples

1 The matrix $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is diagonalizable in $M_{2}(\mathbb{C})$ but not in $M_{2}(\mathbb{R})$.
2 The matrix $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable even over \mathbb{C}.

Section 3.5 The characteristic polynomial

Example Find a matrix P with $P^{-1} A P$ diagonal, where $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$
To answer this, we need to find two linearly independent eigenvectors of A. These are non-zero solutions of
$\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\lambda\left[\begin{array}{l}x \\ y\end{array}\right] \Longrightarrow \begin{aligned} & 2 x+2 y= \\ & x+3 y= \\ & \lambda y\end{aligned} \Rightarrow \begin{aligned} & 0 \\ & 0\end{aligned}=\begin{array}{cc}(\lambda-2) x-2 y \\ 0 & =x+(\lambda-3) y\end{array} \Longrightarrow\left[\begin{array}{cc}\lambda-2 & -2 \\ -1 & \lambda-3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ So we are looking for non-zero solutions $\left[\begin{array}{l}x \\ y\end{array}\right]$ of the system

$$
\left[\begin{array}{cc}
\lambda-2 & -2 \\
-1 & \lambda-3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

These can occur only if the coefficient matrix is non-invertible. If it is invertible, the only solution is $x=y=0$.
A 2×2 matrix is non-invertible if and only if its determinant is 0 .

$$
\operatorname{det}\left[\begin{array}{cc}
\lambda-2 & -2 \\
-1 & \lambda-3
\end{array}\right]=(\lambda-2)(\lambda-3)-(-2)(-1)=\lambda^{2}-5 \lambda+4
$$

The Characteristic Polynomial of a 2×2 matrix

The characteristic polynomial of A is

$$
\operatorname{det}(\lambda I-A)=\lambda^{2}-5 \lambda+4=(\lambda-4)(\lambda-1) .
$$

The eigenvalues of A are the solutions of the characteristic equation $\operatorname{det}(\lambda I-A)=0,1$ and 4 . The eigenspace of A corresponding to $\lambda=1$ is the set of all solutions of the system

$$
\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=1\left[\begin{array}{l}
x \\
y
\end{array}\right] \Longrightarrow\left[\begin{array}{rr}
1-2 & -2 \\
-1 & 1-3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This is the nullspace of the matrix $1 /-A=\left[\begin{array}{cc}-1 & -2 \\ -1 & -2\end{array}\right]$, which is

$$
\left\{\left[\begin{array}{r}
-2 t \\
t
\end{array}\right], t \in \mathbb{R}\right\} .
$$

An eigenvector of A for $\lambda=1$ is any non-zero element of this space, for example $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$.

Section 3.5 The Characteristic Polynomial

The characteristic polynomial of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{2}-A\right)=(\lambda-a)(\lambda-d)-(-c)(-b) & =\lambda^{2}-(a+d) \lambda+(a d-b c) \\
& =\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) .
\end{aligned}
$$

The sum of the eigenvalues λ_{1} and λ_{2} is $a+d$, the trace of A. The product of the eigenvalues λ_{1} and λ_{2} is $a d-b c$, the determinant of A.

The eigenspace of A corresponding to λ_{1} is the nullspace of the matrix $\lambda_{1} I_{2}-A$. Its non-zero elements are the eigenvectors of A corresponding to λ_{1}.

Section 3.5.1: The Determinant (a digression)

For any 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we have

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \underbrace{\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]}_{\operatorname{adj}(A)}=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=(\underbrace{(a d-b c)}_{\operatorname{det}(A)})_{2} .
$$

- If $a d-b c=0$, then A is not invertible.
- If $a d-b c \neq 0$, then the equation shows that
$A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.
The matrix $\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ is the adjugate of A.
- The matrix A has an inverse if and only if $a d-b c \neq 0$. This means that the number $a d-b c$ tells us whether or not the columns of A form a basis of $\mathbb{F}^{2}\left(\right.$ or $\left.\mathbb{R}^{2}\right)$. The number $a d-b c$ is the determinant of A.

The version of the above equation for a 3×3 matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \underbrace{\left[\begin{array}{rrr}
e i-f h & -b i+c h & b f-c e \\
-d i+f g & a i-c g & -a f+c d \\
d h-e g & -a h+b g & a e-b d
\end{array}\right]}_{\operatorname{adj}(A)}=(\underbrace{(a e i-a f h-b d i+b f g+c d h-c e g)}_{\operatorname{det}(A)})_{3} .
$$

Definitions

- The minor $M_{i, j}$ of the (i, j)-entry of A is the determinant of the 2×2 matrix that remains when Row i and Column j are deleted from A.
- The cofactor $C_{i, j}$ is either $M_{i, j}$ or $-M_{i, j}$, according to $\left[\begin{array}{lll}+ & - & + \\ + & + & +\end{array}\right]$
- The adjugate of A is has $C_{j, i}$ in the (i, j)-position. It is the transpose of the matrix of cofactors of A.
- The determinant A can be found by multiplying each entry of any chosen row or column by its own cofactor, and adding the results.

The version of the above equation for a 3×3 matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is:

Definitions

- The minor $M_{i, j}$ of the (i, j)-entry of A is the determinant of the 2×2 matrix that remains when Row i and Column j are deleted from A.
- The cofactor $C_{i, j}$ is either $M_{i, j}$ or $-M_{i, j}$, according to $\left[\begin{array}{ccc}+ & - & + \\ + & - & -\end{array}\right]$
- The adjugate of A is has $C_{j, i}$ in the (i, j)-position. It is the transpose of the matrix of cofactors of A.
- The determinant A can be found by multiplying each entry of any chosen row or column by its own cofactor, and adding the results.

Determinant Properties

1 Each of the definitions above applies to $n \times n$ matrices in general, and gives us a way to recursively define a $n \times n$ determinant, in terms of $(n-1) \times(n-1)$ determinants.
2 The cofactor expansion method is not generally the most efficient way to compute a determinant (it is ok in the 3×3 case). But it can be taken as the definition of a determinant.
3 In some special cases, the determinant is easier to compute. If A is upper or lower triangular, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of A. If A has a square $k \times k$ block A_{1} in the upper left, a square $(n-k) \times(n-k)$ block in the lower right, and only zeros in the lower left $(n-k) \times k$ region, then $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right)$.
4 For a pair of $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This is the multplicative property of the determinant, or the Cauchy-Binet formula. It is not obvious at all.

The characteristic polynomial of a 3×3 matrix

Example Using cofactor expansion by the first column, we find that the characteristic polynomial of $B=\left[\begin{array}{rrr}5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2\end{array}\right]$ is

$$
\begin{aligned}
\operatorname{det}\left(\lambda /_{3}-B\right) & =\operatorname{det}\left[\begin{array}{ccc}
\lambda-5 & -6 & -2 \\
0 & \lambda+1 & 8 \\
-1 & 0 & \lambda+2
\end{array}\right] \\
& =(\lambda-5)((\lambda+1)(\lambda+2)-0(8))+(-1)((-6)(8)-(\lambda+: \\
& =(\lambda-5)\left(\lambda^{2}+3 \lambda+2\right)-(2 \lambda-46) \\
& =\lambda^{3}-2 \lambda^{2}-15 \lambda+36 \\
& =(\lambda-3)\left(\lambda^{2}+\lambda-12\right) \\
& =(\lambda-3)(\lambda+4)(\lambda-3) \\
& =(\lambda-3)^{2}(\lambda+4)
\end{aligned}
$$

Algebraic and Geometric Multiplicity

The eigenvalues of B are 3 (occurring twice as a root of the characteristic polynomial), and -4 (occurring once). We say that 3 has algebraic multplicity 2 and -4 has algebraic multiplicity 1 as an eigenvalue of B. The geometric multplicity of each eigenvalue is the dimension of its corresponding eigenspace.

$$
3 /_{3}-B=\left[\begin{array}{rrr}
-2 & -6 & -2 \\
0 & 4 & 8 \\
-1 & 0 & 5
\end{array}\right]
$$

The RREF of this matrix is $\left[\begin{array}{rrr}1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ and the nullspace consists of all vectors $\left[\begin{array}{r}5 t \\ -2 t \\ t\end{array}\right]$, where $t \in \mathbb{R}$. This is the eigenspace of B corresponding to $\lambda=3$. It has dimension 1 , so 3 has geometric multiplicity 1 as an eigenvector of B.

Algebraic and Geometric Multiplicity

The eigenvalues of B are 3 (occurring twice as a root of the characteristic polynomial), and -4 (occurring once). We say that 3 has algebraic multplicity 2 and -4 has algebraic multiplicity 1 as an eigenvalue of B. The geometric multplicity of each eigenvalue is the dimension of its corresponding eigenspace.

$$
3 /_{3}-B=\left[\begin{array}{rrr}
-2 & -6 & -2 \\
0 & 4 & 8 \\
-1 & 0 & 5
\end{array}\right]
$$

The RREF of this matrix is $\left[\begin{array}{rrr}1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ and the nullspace consists of all vectors $\left[\begin{array}{r}5 t \\ -2 t \\ t\end{array}\right]$, where $t \in \mathbb{R}$. This is the eigenspace of B corresponding to $\lambda=3$. It has dimension 1 , so 3 has geometric multiplicity 1 as an eigenvector of B.

Algebraic and Geometric Multiplicity

Theorem The geometric multplicity of an eigenvalue is at most equal to its algebraic multiplicity.

Proof: Suppose that μ has geometric multiplicity k as an eigenvalue of the square matrix $A \in M_{n}(\mathbb{R})$, and let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for the μ-eigenspace of A. Extend this to a basis \mathcal{B} of \mathbb{R}^{n}, and let P be the matrix whose columns are the elements of \mathcal{B}. Then the first k columns of $P^{-1} A P$ have μ in the diagonal position and zeros elsewhere. It follows that $\lambda-\mu$ occurs at least k times as a factor of $\operatorname{det}\left(\lambda I_{n}-P^{-1} A P\right)$.

Corollary A matrix is diagonalizable if and only if the geometric multiplicity of each of its eigenvalues is equal to the algebraic multiplicity.

