
Chapter 4

Orthogonality, Inner Products and
Projections

4.1 Inner Product Spaces

4.1.1 The ordinary scalar product on R2

In R2, the scalar (or dot) product of the vectors x =
�
x1
x2

�
and y =

�
y1
y2

�
is given by

x · y = x1y1 + x2y2 = xTy = yTx = y · x.

We can interpret the length ||x|| of the vector x as the length of the directed line segment from

the origin to (x1, x2), which by the Theorem of Pythagoras is
�

x2
1 + x2

2 or
√
x · x. Once we have a

concept of length of a vector, we can define the distance d(x,y) between two vectors x and y as
the length of ther difference: d(x,y) = ||x− y||.

Similarly, from the Cosine Rule we can observe that x · y = ||x|| ||y|| cos θ, where θ is the angle
between the directed line segments representing x and y. In particular, x is orthogonal to y (or
x ⊥ y) if and only if x · y = 0.

So the scalar product encodes much of the geometry of R2, and it also provides a mechanism
for defining concepts of length, distance and orthogonality on real vector spaces that do not nec-
essarily have an obvious geometric structure.

4.1.2 Real Inner Products

Let V be a vector space over R. An inner product on V is a function from V × V to R that assigns
an element of R to every order pair of elements of V , and has the following properties. We write
�x,y� for the inner product of x and y, and write the function as �·, ·� : V × V → R.

1. Symmetry: �x,y� = �y, x� for all x,y ∈ V

2. Linearity in both slots (bilinearity): For all x,y, z ∈ V and all a,b ∈ R, we have �ax+by, z� =
a�x, z�+ b�y, z� and �x,ay+ bz� = a�x,y�+ b�x, z�.

3. Non-negativity: �x, x� � 0 for all x ∈ V , and �x, x� = 0 only if x = 0V .

EXAMPLES We can check that each of the following satisfies the requirements to be an inner prod-
uct.

1. The ordinary scalar product on Rn.

2. Let C be the vector space of all continuous real-valued functions on the interval [0, 1]. The
analogue of the ordinary scalar product on C is the inner product given by

�f,g� =
� 1

0
f(x)g(x)dx, for f,g ∈ C.
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3. On the space Mm×n(R), the Frobenius inner product or trace inner product is defined by
�A,B� = trace(ATB). Note that traceATB is the sum over all positions (i, j) of the products
AijBij. So this is closely related to the ordinary scalar product, if the matrices A and B were
regarded as vectors with mn entries over R.

It is possible for a single vector space to have many different inner products defined on it, and
if there is any risk of ambiguity we need to specify which one we are considering.

Given a real vector space and equipped with an inner product �·, ·�, we make the following
two definitions.

Definition 4.1.1. We define the length or norm of any vector v by

||v|| =
�

�v, v�,

and we define the distance between the vectors u and v by

d(u, v) = ||u− v||.

Definition 4.1.2. We say that vectors u and v are orthogonal (with respect to �·, ·�) if �u, v� = 0.

These definitions are consistent with “typical” geometrically motivated concepts of distance
and orthogonality. First, we observe that the triangle inequality holds for the distance function
defined on V . The triangle inequality captures the idea that if we want to travel from point A to
point B, then travelling from A to a third point C, and then from C to B, should never amount to
a shorter journey than travelling from A to B directly. It can have the same distance if C happens
to be on a shortest path from A to B, but it can’t be shorter.

The triangle inequality for an inner product space V is the statement that for any elements
u, v,w of V ,

d(u, v) � d(u,w) + d(w, v).

To prove the triangle inequality, we need to show that ||u − v|| � ||u − w|| + ||w − v|| for all
u, v,w ∈ V . since u−v = (u−w)+(w−v), this will follow if we can show that ||x+y|| � ||x||+ ||y||
for all x,y ∈ V . Now

||x+ y|| � ||x||+ ||y|| ⇐⇒
�
�x+ y, x+ y� �

�
�x, x�+

�
�y,y�

⇐⇒
�

�x, x�+ 2�x,y�+, �y,y� �
�
�x, x�+

�
�y,y�

⇐⇒ �x, x�+ 2�x,y�+, �y,y� � �x, x+ �y,y�+ 2||x||||y||
⇐⇒ �x,y� � ||x||||y||

⇐⇒ �x,y�2 � �x, x��y,y�.

The last inequality here is known as the Cauchy-Schwarz Inequality and it is satisfied for all
vectors x,y in V .

An element v of V is referred to as a unit vector if ||v|| = 1. The norm of elements of V has the
property that ||cv|| = |c|z, ||v|| for any vector v and real scalar c. To see this we can note that

||cv|| =
�

�cv, cv� =
�
c2�v, v� = c||v||.

So we can adjust the norm of any element of V , while preserving its direction, by multplying it by
a positive scalar.

Definition 4.1.3. If v is a non-zero vector in an inner product space V , then

v̂ :=
1
||v||

v

is a unit vector in the same direction as v, referred to as the normalization of v.
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4.1.3 Orthogonal Projection

The following lemma says that any vector in an inner product space can be written as the sum of
two orthogonal vectors, one in a pre-determined one-dimensional subspace and one orthogonal
to that.

Lemma 4.1.4. Let u and v be non-zero vectors in an inner product space V . Then it is possible to write
v = au+ v �, where a is scalar and v � is orthogonal to u.

Proof. If v is orthogonal to u, or if v is a scalar multiple of u, there is nothing to do. In the first
case, a = 0 and v = v �, and in the second case v � is the zero vector. Otherwise, to find a solution
(for a) in the equation v = au+v � (with u ⊥ v �), take an inner product with u on both sides. Then

�u, v� = a�u,u�+ 0 =⇒ a =
�u, v�
||u||2

.

We conclude that v = �u,v�
||u||2

u+(v− �u,v�
||u||2

u), and it can be directly verified that the two components
in this expression are orthogonal to each other with respect to the inner product.

Example 4.1.5. In R2, write u =
�2

1

�
and v =

� 6
−2

�
. Then

||u||2 = 5, u · v = 10,
u · v
||u||2

u =

�
4
2

�
and v =

�
4
2

�
+

�
2
−4

�
.

This is the unique expression for v as the sum of a scalar mutliple of u and a vector orthogonal to u.

Definition 4.1.6. For non-zero vectors u and v in an inner product space V , the vector
�u, v�
||u||2

u is called

the projection of v on the 1-dimensional space spanned by u. It is denoted by proju(v) and it has the
property that v− proju(v) is orthogonal to u.

Lemma 4.1.7. proju(v) is the unique element of �u� whose distance from v is minimal.

Proof. Let au be a scalar multiple of u. Then

d(au, v)2 = �au− v,au− v� = a2�u,u�− 2a�u, v�+ �v, v�

Regarded as a quadratic function of a, this has a minimum when its derivative is 0, i.e. when

2a�u,u�− 2�u, v� = 0, when a =
�u, v�
||u||2

.

The concept and construction of orthogonal projection apply more generally than this. In
general, if U is a subspace of an inner product space V , and v is a non-zero element of V , we can
define projU(v) to be the unique element u of U for which (v − u) is orthogonal to every element
of U. To see why such an element exists, we first consider orthogonal bases.

Let V be a finite dimensional inner product space with a basis B = {b1, . . . ,bn}. A basis of V is
called orthogonal if its elements are all orthogonal to each other with respect to the inner product
(it is called orthonormal if they are all unit vectors in addition).

We can adjust B to an orthogonal (or orthonormal) basis, using the following procedure,
known as the Gram-Schmidt process.

1. Write v1 = b1.

2. Write v2 = b2 −projv1
(b2) = b2 −

�b2,v1�
�v1,v1� v1. Then �v2, v1� = 0, and the linear independence of

{v1, v2} follows from that of {b1,b2}.

3. Write v3 = b3 − projv1
(b3)− projv2

(b3) = b3 −
�b3,v1�
�v1,v1� v1 −

�b3,v2�
�v2,v2� v2.

Then �v3, v1� = 0, �v3, v2� = 0, and v3 is not a linear combination of v1 and v2 (since b3 is not).

4. Continuing in this manner to adjust bi to vi, we arrive at an orthogonal basis. This can be
adapted to an orthonormal basis, by scaling each basis element to a unit vector.
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The Gram-Schmidt process is an algorithm for producing an orthogonal basis in an inner
product space, from any basis as a starting point. It is also an justification for the assertion that
every finite dimensional inner product space has an orthogonal (or orthonormal) basis. This
second point can be used to define the concept of the ortogonal projection of a vector, not only
onto a 1-dimensional subspace as we have seen, but on to any subspace.

Theorem 4.1.8. Let v ∈ V , where V is an inner product space of dimension n, and let W be any subspace
of V . Then there exist unique elements u ∈ W and v � in V , for which v = u + v �, and v � s orthogonal to
every element of W (we write v � ∈ W⊥).

Note: In this situation, u is called the orthogonal projection of v on W, and we write u = projW(v).

Proof. Write k for the dimension of W. Using the Gram-Schidt process, we may construct an
orthogonal basis {b1,b2, . . . ,bk} of W, and then (using Gram-Schmidt again), we may extend this
to an orthogonal basis B = {b1, . . . ,bk, ck+1, . . . , cn} of V . If we write v as a linear combination of
the basis elements of V , we have

v =
�

i=0k
ribi +

n�

j=k+1

sjcj,

for scalars ri and sj. Writing u =
�

i=0k ribi and v � =
�n

j=k+1 sjcj gives an expression of the
required type.

For the uniqueness, suppose that v = u + v � and also that v = w + v ��, where both u and w
belong to W, and both v � and v �� to W⊥. Then since, u−w = v �−v ��, it follows that u−w belongs
to both W and W⊥. Since the zero vector is the only vector to be orthogonal to itself, it must be
that u = w and v � = v ��.

Example 4.1.9. In R3, let W be the 2-dimensional space spanned by u = (1, 2, 1) and w = (4,−2, 0), and
let v = (5, 5, 2). Find projW(v).

First note that u ⊥ w, so that {u,w} is an orthogonal basis of W. In this situation, projW v is
given by

projW(v) = proju(v) + projw(v) =
u · v
u · uu+

w · v
w ·ww

=
17
6
u+

10
20

w

=
1
6
(29, 28, 17).

We can check directly that v−projW(v) = 1
6 (1, 2,−5) is orthogonal to both u and w, hence to every

element of W.

Lemma 4.1.10. Let V be an inner product space with a subspace W, and let v ∈ V . Then projW(v) is the
nearest element of W to v, in terms of the distance determined by the inner product.

Proof. Let u = projW(v). For any element w of W, we have

d(v,w)2 = �v−w, v−w�
= �(v− u) + (u−w), (v− u) + (u−w)�
= �v− u, v− u�+ 2�v− u,u−w�+ �u−w,u−w�

� �v− u, v− u� = d(v,u)2,

with equality only if w = projW(v).

Application: least squares for overdetermined systems
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Example Consider the following overdetermined linear system.

2x + y = 3
x − y = 0
x − 3y = −4




2 1
1 −1
1 −3



�
x
y

�
=




3
0

−4




This system has three equations and only two variables. It is inconsistent and overdetermined -
each pair of equations has a simultaneous solution, but all three do not.

Overdetermined systems arise quite often in applications, from observed data. Even if they
do not have exact solutions, approximate solutions are of interest.

For a vector b ∈ R3, the system 


2 1
1 −1
1 −3




� �� �
A

�
x
y

�
= b

has a solution if and only if b belongs to the 2-dimensional linear span W of the columns of the

coefficient matrix A: v1 =




2
1
1


 and v2 =




1
−1
−3


.

If not, then the nearest element of W to B is b � = projW(b), and our approximate solutions for
x and y are the entries of the vector c in R2 for which Ac = b �. We know that b � − b is orthogonal
to v1 and v2, which are the rows of AT . Hence

AT (b � − b) =

�
0
0

�
=⇒ ATb � = ATAc = ATb =⇒ c = (ATA)−1ATb

In our example, 


2 1
1 −1
1 −3



�
x
y

�
=




3
0

−4




A =




2 1
1 −1
1 −3


 , AT =

�
2 1 1
1 −1 −3

�
, ATA =

�
6 −2

−2 11

�
, ATb =

�
2

15

�
.

The least squares solution is given by

�
x
y

�
= c = (ATA)−1ATb =

1
62

�
11 2
2 6

� �
2

15

�
=




26
31

47
31


 .
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