Consequences of the exchange lemma

Theorem

If V is a finite dimensional vector space over a field \mathbb{F}, then every basis of V has the same number of elements.

Proof Let B_{1} and B_{2} be bases of V. Then B_{1} is linearly independent and B_{2} is a spanning set of V, so $\left|B_{1}\right| \leq\left|B_{2}\right|$ by the Replacement Lemma.
Also, B_{2} is linearly independent and B_{1} is a spanning set of V, so $\left|B_{2}\right| \leq\left|B_{1}\right|$ by the Replacement Lemma. Hence $\left|B_{1}\right|=\left|B_{2}\right|$.
Definition The number of elements in any (hence every) basis of a finite dimensional vector space V is called the dimension of V, denoted $\operatorname{dim} V$.

An Example

Let V be the space of skew-symmetric matrices in $M_{3}(\mathbb{R})$ (a matrix A is skew-symmetric if $A^{T}=-A$). Then

$$
V=\left\{\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right): a, b, c \in \mathbb{R}\right\} .
$$

The typical element of V noted above can be written as

$$
\begin{aligned}
\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right) & =a\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+b\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)+c\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \\
& =a\left(E_{12}-E_{21}\right)+b\left(E_{13}-E_{31}\right)+c\left(E_{23}-E_{32}\right),
\end{aligned}
$$

where $E_{i j}$ is the matrix with 1 in the (i, j)-position and zeros elsewhere.
We see that $\left\{E_{12}-E_{21}, E_{13}-E_{31}, E_{23}-E_{32}\right\}$ is a spanning set of V.
This set is also linearly independent. We conclude that $\left\{E_{12}-E_{21}, E_{13}-E_{31}, E_{23}-E_{32}\right\}$ is a basis of V and that $\operatorname{dim} V=3$.

Recall (Steinitz Exchange Theorem) In a vector space V, if L is any linearly independent set and S is any finite spanning set, then $|L| \leq|S|$.
Let V be a vector space of dimension n over a field \mathbb{F}.
Lemma 1 Every linearly independent subset of V with n elements is a basis of V.

Lemma 2 Every spanning set of V with n elements is a basis of V.
Lemma 3 If L is a linearly independent subset of V, then L can be extended to a basis of V.

Lemma 4 If U is a proper subspace of V, then $\operatorname{dim} U<n$.

There is really only one \mathbb{F}-vector space of each dimension!

For any field $\mathbb{F}, \mathbb{F}^{n}$ denotes the space of all column vectors with n entries.
Suppose that V is a \mathbb{F}-vector space with $\operatorname{dim} V=n$, and let
$B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V over \mathbb{F}. For every element $v \in V$, there is a unique expression for v as a linear combination of the elements of B :

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

We refer to a_{1}, \ldots, a_{n} as the coordinates of v with respect to the basis B. With this association, we can consider v to be represented by the column vector in \mathbb{F}^{n} whose entries are a_{1}, \ldots, a_{n}.

This association defines a bijective correspondence between V and \mathbb{F}^{n}, and means that we can identify these two vector spaces as being essentially the same.

The standard basis of \mathbb{F}^{n} is $\left\{e_{1}, \ldots, e_{n}\right\}$, where e_{i} has 1 in position i and 0 in all other positions.
Theorem Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be any set of n vectors in \mathbb{F}^{n}. Then B is a basis of \mathbb{F}^{n} if and only if the matrix A whose columns are v_{1}, \ldots, v_{n} has an inverse in $M_{n}(\mathbb{F})$.

Proof (\Longleftarrow) Suppose that A has an inverse of in $M_{n}(\mathbb{F})$. Then $A A^{-1}=I_{n}$, and $A w_{1}=e_{1}$, where w_{1} is the first column of A^{-1}. It follows that e_{1} is a linear combination of v_{1}, \ldots, v_{n}.
(\Longrightarrow) On the other hand, suppose that B is a basis of \mathbb{F}_{n}. Then e_{1} is a linear combination of the columns of B, and so $e_{1}=B w_{1}$, for some $w_{1} \in \mathbb{F}^{n}$. Similarly $e_{i}=B w_{i}$, for $i=2, \ldots, n$. It follows that $A W=I_{n}$, where W is the matrix in $M_{n}(\mathbb{F})$ whose columns are w_{1}, \ldots, w_{n}, and hence A has an inverse in $M_{n}(\mathbb{F})$.

The Column Space and Row Space

Definition

Let A be a $m \times n$ matrix with entries in \mathbb{R} (or any field). The column space of A is the subspace of \mathbb{R}^{m} spanned by the columns of A. Two row space of A is the subspace of \mathbb{R}^{n} spanned by the rows. The dimensions of the column space and row space are called the column rank and row rank of A.

- The row rank of a matrix is the number of linearly independent rows. It is the number of non-zero rows in a RREF obtained from the matrix.
- The column rank of a matrix is the number of linearly independent columns.

Theorem

For every matrix with entries in \mathbb{R} (or any field), the row rank and column rank are equal.

Let $A \in M_{m \times n}(\mathbb{R})$. Write c and r respectively for the row rank and column rank of A.
Let C be a $m \times c$ matrix whose columns form a basis for the column space of A.
Then

$$
A=C B,
$$

for some $c \times n$ matrix B, since every column of A is a linear combination of the columns of C.

But now every row of A is a linear combination of the c rows of B.
The row space of A is contained in the rowspace of B so its dimension is at most c.

Hence $r \leq c$, and a similar argument shows that $c \leq r$.

Conclusion: $c=r$, referred to as the rank of A.

Themes for Chapter 3

- It is useful to be able to move between different bases for a given vector space;
- One basis may be far better than another for describing a particular linear transformation - the standard basis is not always the most useful one;
- Everything can be interpreted in terms of matrix algebra, although the setup takes some work.

Moving between two bases

Suppose we have another basis $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$ of R^{3} (besides the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$), where

$$
b_{1}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], b_{2}=\left[\begin{array}{r}
-1 \\
-1 \\
2
\end{array}\right], b_{3}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] .
$$

Question: Suppose we have some vector in \mathbb{R}^{3}, for example $v=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$. What are the coordinates of v with respect to \mathcal{B} ?

Another Question: Why would we want to know this?

