Section 2.2: Linear Independence

Definition Let S be a subset of a vector space V, having at least 2 elements. Then S is linearly independent if no element of S is a linear combination of the other elements of S (equivalently, if no element of S belongs to the span of the other elements of S).

A subset consisting of a single element is linear independent, provided that its unique element is not the zero vector.

To decide if a given set is linearly independent, the above definition is not always the most useful formulation. The following altenative version is often more useful in practice.

Definition (Equivalent version) Let S be a non-empty subset of a vector space V. Then S is linearly independent if the only way to write the zero vector in V as a linear combination of elements of S is to take all the coefficients to be 0 .

Equivalence of the two definitions

Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ and suppose that $v_{1} \in\left\langle v_{2}, \ldots, v_{k}\right\rangle$. Then

$$
v_{1}=a_{2} v_{2}+\cdots+a_{k} v_{k}
$$

and

$$
0_{v}=-v_{1}+a_{2} v_{2}+\cdots+a_{k} v_{k}
$$

is an expression for the zero vector as a linear combination of elements of S, whose coefficients are not all zero.

On the other hand, suppose that

$$
0=c_{1} v_{1}+\cdots+c_{k} v_{k}
$$

where the scalars c_{i} are not all zero. If $c_{1} \neq 0$ (for example), then the above equation can be rearranged to express v_{1} as a linear combination of v_{2}, \ldots, v_{k} :

$$
v_{1}=-\frac{c_{2}}{c_{1}} v_{2}-\cdots-\frac{c_{k}}{c_{1}} v_{k}
$$

An example in \mathbb{R}^{3}

$\ln \mathbb{R}^{3}$, let $S=\left\{\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}-2 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{r}-3 \\ 8 \\ 3\end{array}\right]\right\}$.
To determine whether S is linearly independent, we must investigate whether the system of equations

$$
x\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]+y\left[\begin{array}{r}
-2 \\
3 \\
2
\end{array}\right]+z\left[\begin{array}{r}
-3 \\
8 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

has solutions other than $(x, y, z)=(0,0,0)$. The augmented matrix of this system, and its RREF, are

$$
\left[\begin{array}{rrrr}
1 & -2 & -3 & 0 \\
2 & 3 & 8 & 0 \\
-1 & 2 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus for any $t,(x, y, z)=(-t,-2 t, t)$ is a solution, and for example by taking $t=1$ we see that

$$
-1\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]-2\left[\begin{array}{r}
-2 \\
3 \\
2
\end{array}\right]+1\left[\begin{array}{r}
-3 \\
8 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

and hence that each of the three elements of S is a linear combination of the other two. So S is not linearly independent (we say that S is linearly dependent).

Characterizations of linearly independent sets

Let S be a subset of a vector space V.
$1 S$ is linearly independent if S is a minimal spanning set of its linear span - no proper subset of S spans the same subspace of V that S does.
$2 S$ is linearly independent if every element of $\langle S\rangle$ has a unique expression as a linear combination of elements of S.
3 Another version of 2. above: S is linearly independent if every element of the span of S has unique coordinates in terms of the elements of S.
So a linearly independent set in a vector space V is a minimal or irredundant spanning set for its linear span. If its linear span happens to be all of V, it gets a special name.

$$
\begin{aligned}
& \text { A basis of a vector space } V \text { is a spanning set of } V \text { that is } \\
& \text { linearly independent. }
\end{aligned}
$$

Lecture 12: Bases and dimension

Definition A basis of a vector space V is a spanning set of V that is linearly independent. [Plural: bases]

Lemma 10

If S is a finite spanning set of a vector space V, then S contains a basis of V.

Proof.

If S is not linearly independent, then some element v_{1} of S is in the span of the other elements of S, and $S_{1}:=S \backslash\left\{v_{1}\right\}$ is again a spanning set of V. If S_{1} is not linearly independent, then we can discard an element of S_{1} that is in the linear span of the others, to form a smaller spanning set S_{2}. Since S is finite, this process cannot continue indefinitely, and it concludes with a linearly independent spanning set of V.

We will show that if V has a finite basis, then every basis has the same number of elements. This number is then referred to as the dimension of V. The key to this is to show that the number of elements in any spanning set of V is an upper bound for the number of elements in any linearly independent subset of V.

Theorem

[Steinitz exchange lemma] Let V be a vector space, and suppose that $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a spanning set of V. Then the number of elements in a linearly independent subset of V cannot exceed n.

Proof Outline Let $L=\left\{y_{1}, \ldots, y_{k}\right\}$ be a linearly independent subset of V. We need to show $k \leq t$.

Spanning set $S=\left\{v_{1}, \ldots, v_{n}\right\}$. Linearly independent set $L=$ $\left\{y_{1}, \ldots, y_{k}\right\}$. Need to show $k \leq n$.
$1 y_{1}$ can be written as a linear combination of elements of S.
2 (After reordering) we can assume v_{1} has a non-zero coefficient in such a combination.
3 Replace v_{1} with y_{1} to make $S_{1}=\left\{y_{1}, v_{2}, \ldots, v_{n}\right\}$. Argue that S_{1} is still a spanning set.
$4 y_{2}$ is a combination of elements of S_{1}, not only involving y_{1} but involving at least one of v_{1}, \ldots, v_{n} (say v_{2}). Replace v_{2} with y_{2} to get $S_{2}=\left\{y_{1}, y_{2}, v_{3}, \ldots, v_{n}\right\}$, another spanning set.
5 Keep going. If $k>n$, then after n steps we find that $\left\{y_{1}, \ldots, y_{n}\right\}$ is a spanning set, hence y_{n+1} is a linear combination of these. Contradiction to the linear independence of L.

Consequences of the exchange lemma

Theorem

If V is a finite dimensional vector space over a field \mathbb{F}, then every basis of V has the same number of elements.

Proof.

Let B_{1} and B_{2} be bases of V. Then B_{1} is linearly independent and B_{2} is a spanning set of V, so $\left|B_{1}\right| \leq\left|B_{2}\right|$ by Theorem 61. Also, B_{2} is linearly independent and B_{1} is a spanning set of V, so $\left|B_{2}\right| \leq\left|B_{1}\right|$ by Theorem 61. Hence $\left|B_{1}\right|=\left|B_{2}\right|$.

Definition The number of elements in any (hence every) basis of a finite dimensional vector space V is called the dimension of V, denoted $\operatorname{dim} V$.

An Example

Let V be the space of skew-symmetric matrices in $M_{3}(\mathbb{R})$ (a matrix A is skew-symmetric if $A^{T}=-A$). Then

$$
V=\left\{\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right): a, b, c \in \mathbb{R}\right\} .
$$

The typical element of V noted above can be written as

$$
\begin{aligned}
\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right) & =a\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+b\left(\begin{array}{ccc}
0 & a & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)+c\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \\
& =a\left(E_{12}-E_{21}\right)+b\left(E_{13}-E_{31}\right)+c\left(E_{23}-E_{32}\right),
\end{aligned}
$$

where $E_{i j}$ is the matrix with 1 in the (i, j)-position and zeros elsewhere. We see that $\left\{E_{12}-E_{21}, E_{13}-E_{31}, E_{23}-E_{32}\right\}$ is a spanning set of V. This set is also linearly independent. We conclude that $\left\{E_{12}-E_{21}, E_{13}-E_{31}, E_{23}-E_{32}\right\}$ is a basis of V and that $\operatorname{dim} V=3$.

