
Section 2.2: Linear Independence

Definition Let S be a subset of a vector space V , having at least 2
elements. Then S is linearly independent if no element of S is a linear
combination of the other elements of S (equivalently, if no element of S
belongs to the span of the other elements of S).

A subset consisting of a single element is linear independent, provided
that its unique element is not the zero vector.

To decide if a given set is linearly independent, the above definition is
not always the most useful formulation. The following altenative version
is often more useful in practice.

Definition (Equivalent version) Let S be a non-empty subset of a vector
space V . Then S is linearly independent if the only way to write the zero
vector in V as a linear combination of elements of S is to take all the
coefficients to be 0.
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Equivalence of the two definitions

Let S = {v1, ... , vk} and suppose that v1 ∈ �v2, ... , vk�. Then

v1 = a2v2 + · · ·+ akvk ,

and
0V = −v1 + a2v2 + · · ·+ akvk

is an expression for the zero vector as a linear combination of elements of
S , whose coefficients are not all zero.

On the other hand, suppose that

0 = c1v1 + · · ·+ ckvk

where the scalars ci are not all zero. If c1 �= 0 (for example), then the
above equation can be rearranged to express v1 as a linear combination
of v2, ... , vk :

v1 = −c2
c1
v2 − · · ·− ck

c1
vk
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An example in R3

In R3, let S =








1
2

−1


 ,



−2
3
2


 ,



−3
8
3





.

To determine whether S is linearly independent, we must investigate
whether the system of equations

x




1
2

−1


+ y



−2
3
2


+ z



−3
8
3


 =



0
0
0




has solutions other than (x , y , z) = (0, 0, 0). The augmented matrix of
this system, and its RREF, are




1 −2 −3 0
2 3 8 0

−1 2 3 0


 −→



1 0 1 0
0 1 2 0
0 0 0 0



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An example in R3

Thus for any t, (x , y , z) = (−t,−2t, t) is a solution, and for example by
taking t = 1 we see that

−1




1
2

−1


− 2



−2
3
2


+ 1



−3
8
3


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

0
0
0


 ,

and hence that each of the three elements of S is a linear combination of
the other two. So S is not linearly independent (we say that S is linearly
dependent).
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Characterizations of linearly independent sets

Let S be a subset of a vector space V .

1 S is linearly independent if S is a minimal spanning set of its linear
span - no proper subset of S spans the same subspace of V that S
does.

2 S is linearly independent if every element of �S� has a unique
expression as a linear combination of elements of S .

3 Another version of 2. above: S is linearly independent if every
element of the span of S has unique coordinates in terms of the
elements of S .

So a linearly independent set in a vector space V is a minimal or
irredundant spanning set for its linear span. If its linear span happens to
be all of V , it gets a special name.

A basis of a vector space V is a spanning set of V that is
linearly independent.
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Lecture 12: Bases and dimension

Definition A basis of a vector space V is a spanning set of V that is
linearly independent. [Plural: bases]

Lemma 10

If S is a finite spanning set of a vector space V , then S contains a basis
of V .

Proof.

If S is not linearly independent, then some element v1 of S is in the span
of the other elements of S , and S1 := S\{v1} is again a spanning set of
V . If S1 is not linearly independent, then we can discard an element of
S1 that is in the linear span of the others, to form a smaller spanning set
S2. Since S is finite, this process cannot continue indefinitely, and it
concludes with a linearly independent spanning set of V .
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The number of elements in a basis

We will show that if V has a finite basis, then every basis has the same
number of elements. This number is then referred to as the dimension of
V . The key to this is to show that the number of elements in any
spanning set of V is an upper bound for the number of elements in any
linearly independent subset of V .

Theorem

[Steinitz exchange lemma] Let V be a vector space, and suppose that
S = {v1, ... , vn} is a spanning set of V . Then the number of elements in
a linearly independent subset of V cannot exceed n.

Proof Outline Let L = {y1, ... , yk} be a linearly independent subset of V .
We need to show k ≤ t.
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Proof outline for exchange lemma

Spanning set S = {v1, ... , vn}. Linearly independent set L =
{y1, ... , yk}. Need to show k ≤ n.

1 y1 can be written as a linear combination of elements of S .

2 (After reordering) we can assume v1 has a non-zero coefficient in
such a combination.

3 Replace v1 with y1 to make S1 = {y1, v2, ... , vn}. Argue that S1 is
still a spanning set.

4 y2 is a combination of elements of S1, not only involving y1 but
involving at least one of v1, ... , vn (say v2). Replace v2 with y2 to
get S2 = {y1, y2, v3, ... , vn}, another spanning set.

5 Keep going. If k > n, then after n steps we find that {y1, ... , yn} is
a spanning set, hence yn+1 is a linear combination of these.
Contradiction to the linear independence of L.
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Consequences of the exchange lemma

Theorem

If V is a finite dimensional vector space over a field F, then every basis of
V has the same number of elements.

Proof.

Let B1 and B2 be bases of V . Then B1 is linearly independent and B2 is
a spanning set of V , so |B1| ≤ |B2| by Theorem 61. Also, B2 is linearly
independent and B1 is a spanning set of V , so |B2| ≤ |B1| by Theorem
61. Hence |B1| = |B2|.

Definition The number of elements in any (hence every) basis of a finite
dimensional vector space V is called the dimension of V , denoted dimV .
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An Example

Let V be the space of skew-symmetric matrices in M3(R) (a matrix A is
skew-symmetric if AT = −A). Then

V =








0 a b
−a 0 c
−b −c 0


 : a, b, c ∈ R



 .

The typical element of V noted above can be written as




0 a b
−a 0 c
−b −c 0


 = a




0 1 0
−1 0 0
0 0 0


+ b




0 a 1
0 0 0
−1 0 0


+ c



0 0 0
0 0 1
0 −1 0




= a(E12 − E21) + b(E13 − E31) + c(E23 − E32),

where Eij is the matrix with 1 in the (i , j)-position and zeros elsewhere.
We see that {E12 − E21,E13 − E31,E23 − E32} is a spanning set of V .
This set is also linearly independent. We conclude that
{E12 − E21,E13 − E31,E23 − E32} is a basis of V and that dimV = 3.
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