
Chapter 2: Vector Spaces and Linear Transformations

We think of the real number line R as begin “1-dimensional”, and of R2

as being “2-dimensional” and of R3 as being 3-dimensional. These terms
are used not only in mathematics but in everyday language aswell. In
linear algebra, they mean something quite precise.
To say that R is 1-dimensional means that we only need one real number
to specify the position of a point in R.
For a point in R2, we need to specify two real numbers, for example its x
and y coordinates - but these are not the only options. We could specify
its position relative to another pair of lines, instead of the two coordinate
axes.
Another example of a vector space that is 2-dimensional is the space V
consisting of all symmetric 2× 2 matrices in M2(R) with trace zero. A
symmetric matrix is one that is equal to its transpose. Trace zero means
the sum of the entries on the main diagonal is zero.
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Vector space - the “official” definition

Definition A vector space V over a field F is a non-empty set equipped
with an addition operation (+), and whose elements can be multiplied by
scalars in F, subject to the following axioms.

1 For all u, v ∈ V , u + v = v + u (addition is commutative).

2 For all u, v ,w ∈ V , (u + v) + w = u + (v + w) (+ is associative).

3 V has an element 0V , with 0V + v = v for all v ∈ V (zero element).

4 For every v ∈ V , there exists an element −v of V , with the property
that v + (−v) = 0V (subtraction).

5 If α,β ∈ F and v ∈ V , then α(βv) = αβ(v) (compatibility of scalar
multiplication with multiplication in F).

6 If α ∈ F and u, v ∈ V , then α(u + v) = αu + αv (distributivity of
scalar multiplication over addition in V ).

7 If α,β ∈ F and v ∈ V , then (α+ β)v = αv + βv (distributivity of
scalar multiplication over addition in F).

8 1Fv = v for all v ∈ V , where 1F is the multplicative identity element
of F.
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Examples (and non-examples) of Vector Spaces

1 The set Q[x ] of all polynomials with rational coefficients is a vector
space over Q.

2 The set M2×3(R) of all 2× 3 matrices with real entries is a vector
space over R.

3 C is a vector space over R, also over Q.

4 The set of all matrices with real entries is not a vector space (since
not all pairs of matrices can be added together).

5 The set of all 3× 3 matrices with real entries and non-zero
determinant is not a vector space.
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Subspaces

Definition Let V be a vector space over R. A subset U of V is a
subspace (or vector subspace) of V if U is itself a vector space over F,
under the addition and scalar multiplication operations of V .

Two things need to be checked to confirm that a subset U of a vector
space V is a subspace:

1 That U is closed under the addition in V : that u1 + u2 ∈ U
whenever u1 ∈ U and u2 ∈ U;

2 That U is closed under scalar multiplication: that αu ∈ U whenever
u ∈ U and α ∈ F.
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Examples of Subspaces

1. Let Q[x ] be the set of all polynomials with rational coefficients.
Within Q[x ], let P2 be the subset consisting of all polynomials of
degree at most 2. This means that
P2 = {a2x2 + a1x + a0 : a0, a1, a2 ∈ Q}. Then P2 is a (vector)
subspace of Q[x ]. If f (x) and g(x) are rational polynomials of
degree at most 2, then so also is f (x) + g(x). If f (x) is a rational
polynomial of degree at least 2, then so is αf (x) for any α ∈ Q.

2. The set of C complex numbers is a vector space over the set of real
numbers. Within C, the subset R is an example of a vector
subspace over R. An example of a subset of C that is not a real
vector subset is the unit circle S in the complex plane - this is the
set of complex numbers of modulus 1, it consists of all complex
numbers of the form a+ bi , where a2 + b2 = 1. This is closed
neither under additon nor multiplication by real scalars.
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Examples of Subspaces

3. The Cartesian plane R2 is a real vector space. Within R2, let
U = {(a, b) : a ≥ 0, b ≥ 0}. Then U is closed under addition and
under multiplication by positive scalars. It is not a vector subspace of
R2, because it is not closed under multiplication by negative scalars.

4. Let v be a (fixed) non-zero vector in R3, and let

v⊥ = {u ∈ R3 : uT v = 0}.

Then v⊥ is not empty since 0 ∈ v⊥. Suppose that u1, u2 ∈ v⊥.
Then

(u1 + u2)
T v = (uT1 + uT2 )v = uT1 v + uT2 v = 0.

So u1 + u2 ∈ v⊥ and v⊥ is closed under addition.
If u ∈ v⊥ and α ∈ R, then (αu)T v = αuT v = α0 = 0, and
αu ∈ v⊥. Hence v⊥ is closed under scalar multiplication in R3.
Conclusion: v⊥ is a vector subspace of R3. Note that v⊥ is not all
of R3, since v �∈ v⊥.
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The linear span of a set

Definition Let V be a vector space over a field F, and let S be a
non-empty subset of V . The F-linear span (or just span) of S , denoted
�span� is the set of all F-linear combinations of elements of S in V . If
S = V , then S is called a spanning set of V . This means that every
element of V is a linear combination of elements of S .

Lemma If S is a subset of a vector space V , then �S� is a subspace of V ,
and it is the smallest subspace of V that contains the set S .
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Example

Let Q[x ] be the set of all polynomials with rational coefficients. Within
Q[x ], let P2 be the subspace consisting of all polynomials of degree at
most 2,

P2 = {a2x2 + a1x + a0 : a0, a1, a2 ∈ Q}.
If S = {x2 + 1, x + 1}, then

�S� = {a(x2 + 1) + b(x + 1) : a, b ∈ Q} = {ax2 + bx + a+ b : a, b ∈ Q}.

So �S� consists of all rational polynomials of degree at most 2, in which
the constant coefficient is the sum of the coefficients of x and x2. For
example, x2 + 2x + 3 ∈ �S� but x2 + 2x + 4 �∈ �S�.
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An example in R2

The set S =
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is a spanning set of the vector space R2

of all real column vectors with two entries. If v =
�a
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�
∈ R2, we can write

v as a linear combination of the elements of S , for example by writing
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This is not the only way to do it. We could also write
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We could forget about the third element of S and just write
�
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�
= (a− 2b)
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So all three elements of S are not needed to span R2. We could do it
just with the subset {

�2
1

�
,
�3
1

�
}. Note that

� 1
−1

�
is a R-linear combination

of the other two elements of S . If we drop this element from S , we can
still recover it in the span of the remaining elements.
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Finite dimensional and infinite dimensional spaces

Lemma 8

Suppose that S1 ⊂ S, where S is a subset of a vector space V . Then
�S1� ⊆ �S�, and �S1� = �S� if and only if every element of S\S1 is a
linear combination of elements of S1.

We finish this section by noting the distinction between a finite
dimensional and infinite dimensional vector space.

Definition 9

A vector space is said to be finite dimensional if it has a finite spanning
set. A vector space that does not have a finite spanning set is infinite
dimensional.
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Two examples of infinite dimensional vector spaces

1 The vector space R[x ] of all polynomials with real coefficients is
infinite dimensional. To see this, let S be any finite subset of R[x ]
(i.e. a finite set of polynomials). Let xk be the highest power of x
to appear in any element of S . Then no linear combination of
elements of S has degree exceeding k , so the linear span of S
cannot be all of R[x ].

2 The set R of real numbers is infinite dimensional as a vector space
over the field Q of rational numbers.
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