
Chapter 3

Linear Transformations, Eigenvectors
and Similarity

3.1 Changes of Basis

The dimension of the space Fn is n - the standard basis consists of the column vectors e1, . . . , en,
where ei has 1 in position i and zeros in all other positions.

For example, in R3,

e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1


 ,

and the standard basis E = {e1, e2, e3}.

3.1.1 How can we recognize a basis of Fn?

It should have n elements, which should be column vectors in Fn. But some sets of three column
vectors in R3 are bases of R3 and some are not. How do we know?

Theorem 3.1.1. Let B = {v1, . . . , vn} be any set of n vectors in Fn. Then B is a basis of Fn if and only if
the matrix A whose columns are v1, . . . , vn has an inverse in Mn(F).

Proof. Suppose that A has an inverse of in Mn(F). Then AA−1 = In, and Aw1 = e1, where w1 is
the first column of A−1. It follows that e1 is a linear combination of v1, . . . , vn. Similarly each ei is
in the linear span of {v1, . . . , vn}, and so {v1, . . . , vn} is a spanning set of Fn. Hence it is a basis of
Fn by Lemma 2.3.1.

On the other hand, suppose that B is a basis of Fn. Then e1 is a linear combination of the
columns of B, and so e1 = Bw1, for some w1 ∈ Fn. Similarly ei = Bwi, for i = 2, . . . ,n. It follows
that AW = In, where W is the matrix in Mn(F) whose columns are w1, . . . ,wn, and hence A has
an inverse in Mn(F).

3.1.2 Moving between two bases - an example

Suppose we have another basis B = {b1,b2,b3} of R3 (besides the standard basis), where

b1 =




1
1

−1


 ,b2 =




−1
−1

2


 ,b3 =




1
−1

0


 .

You can check that B is linearly independent, hence is is a basis of R3 - for example by checking
that the RREF of the 3× 3 matrix [b1 b2 b3] is I3. We write B for the matrix with columns b1,b2,b3.
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Question: Suppose we have some other vector in R3, for example v =




2
1
3


.

What are the coordinates of v with respect to B?

Another Question: Why would we want to know this?
Partial answer - the standard basis is very useful for example for describing a rotation of R3 through
180◦ about the Z-axis. We can say exactly how this affects each of the standard basis vectors. But
if we wanted to describe a rotation around a different axis, say for example one in the direction of
b1 (which is perpendicular to b2 and b3) maybe the standard basis is not the best for that. We will
come back to this theme shortly, for now the suggestion is to just keep it in mind.

Back to the first question: if we knew how to write e1, e2 and e3 as a linear combination of
b1,b2,b3, we could do the same for v (or any vector). To figure this out: the B-coordinates of e1
are the values of x,y, z in the unique solution of




1 −1 1
1 −1 −1

−1 2 0






x
y
z


 =




1
0
0


 , or B




x
y
z


 = e1.

The corresponding values are given by



x
y
z


 = B−1




1
0
0


 ,

which means they are the entries of Column 1 of B−1. In the same way, the B-coordinates of e1
and e3 are given by Columns 2 and 3 of B−1.

We can confirm this for our example:

B =




1 −1 1
1 −1 −1

−1 2 0


 , B−1 =




1 1 1
1/2 1/2 1
1/2 −1/2 0




Looking at (for example) Column 2 of B−1 we can confirm that its entries are the B-coordinates of
e2:

1b1 +
1
2
b2 −

1
2
b3 = 1




1
1

−1


+

1
2




−1
−1

2


−

1
2




1
−1

0


 =




1 − 1
2 − 1

2
1 − 1

2 + 1
2

−1 + 1


 = e2.

Now for the B-coordinates of v =




2
1
3


. We write [v]B for the column whose entries are the B-

coordinates of v. The punchline is that we can now achieve this through a matrix-vector product.

v = 2e1 + 1e2 + 3e3 =⇒ [v]B = 2[e1]B + 1[e2]B + 3[e3]B

=


 [e1]B [e2]B [e3]B






2
1
3




=




1 1 1
1/2 1/2 1
1/2 −1/2 0






2
1
3


 =




6
9/2
1/2




Conclusion: v = 6b1 +
9
2b2 +

1
2b3.

Exercise: Confirm this conclusion by direct calculation.

More important conclusion: To find the B-coordinates of any vector v in R3, what we need to
do is multiply v on the left by the change of basis matrix from the standard basis to B. This is the
inverse of the matrix whose columns are the elements of B (written in the standard basis).

28



LEARNING OUTCOMES FOR THIS SECTION

1. How to recognize when a set of n column vectors in Rn (or Fn) forms a basis.
Think about the statement of Theorem 3.1.1 first, and try out a few of your own examples
with n = 2 or n = 3, to get a sense of what it is saying. This is a good thing to do before
studying the proof (which is not necessarily urgent).

2. To recognize that elements of Rn (or Fn) have different coordinates with respect to different bases
Think about this for some examples with n = 2.

3. To use the change of basis matrix to write the coordinates of any vector in Fn with respect to a given
basis
The instruction for how to do this is the “More important conclusion” above. Try it out for
other vectors besides the v that was used here. Use a couple of such examples to satisfy
yourself that it works, then go over the steps to think about why it works.

3.2 The Rank-Nullity Theorem

Let V and W be F-vector spaces and let φ : V → W be a linear transformation. Recall what this
means:

• φ(u+ v) = φ(u) + φ(v) for all u, v ∈ V , and φ(λv) = λφ(v), for all v ∈ V and λ ∈ F.

Example 3.2.1. If A is matrix in Mm×n(F), then left multiplication by A defines a linear transformation

from Fn to Fm. For example, the matrix A =

�
2 3 1
1 −2 1

�
defines a linear transformation from R3 to

R2 via 


a
b
c


 →

�
2 3 1
1 −2 1

�


a
b
c


 =

�
2a+ 3b+ c
a− 2b+ c

�
.

For example,




1
−1

4


 →

�
3
7

�
under this transformation.

Note that the images of the three standard basis vectors of R3 under this transfomation are respectively the
columns of A.

Now suppose that dimV = n and dimW = m. Once we choose bases BV and BW for V
and W, every linear transformation from V to W looks like the one in Example 3.2.1 above. For
example, the differential operator D, which sends every polynomial to its derivative, is a linear
transformation from R[x] to R[x]. But R[x] is an infinite-dimensional space, so we’ll restrict our
attention to the subspace P3, which has dimension 4 and consists of all polynomials a1x

3 +a2x
2 +

a3x + a4, of degree at most 3. The differential operator maps P3 to P2 (polynomials of degree at
most 2).

Now write B3 = {x3, x2, x, 1} and B2 = {x2, x, 1} - bases for P3 and P2 respectively. We take each
of the four basis elements of B3 and look at its image in P2 under D, considered as a vector in
terms of its B2-coordinates. We have

x3 → 3x2 ↔




3
0
0



B2

, x2 → 2x ↔




0
2
0



B2

, x → 1 ↔




0
0
1



B2

, 1 → 0 ↔




0
0
0



B2

.

The B3-coordinates of the element p(x) = ax3 +bx2 + cx+d are given by the column




a
b
c
d


, and

the B2 coordinates of the derviative of p are given by

a




3
0
0



B2

+ b




0
2
0



B2

+ c




0
0
1



B2

+ d




0
0
0



B2

=




3 0 0 0
0 2 0 0
0 0 1 0







a
b
c
d



B3

.
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The 3 × 4 matrix above is the matrix of D with respect to the bases B3 and B2. Its columns are the
images under D of the elements of B2, written with respect to B3. To apply the operator to any
polynomial p(x), we can write it as a column vector (with respect to B3) and then multiply by the
matrix. The result has the B2-coordinates of p �(x).

Important Note: This matrix depends on the choice of bases! Suppose we keep the basis B2 of P2,
but take C3 = {x3+x2, x2+x, x+1, 1} as our basis of P3. The matrix of the differential operator with
respect to this choice has the B2-coordinates of the derivatives of elements of C3 as its columns, it
is given by 


3 0 0 0
2 2 0 0
0 1 1 0


 .

To use this matrix to determine the derivative of (for example) f(x) = x3 + 4x2 − x− 2, first write
f(x) with respect to C3: 1(x3 + x2) + 3(x2 + x)− 4(x+ 1) + 2(1). Then




3 0 0 0
2 2 0 0
0 1 1 0







1
3

−4
2



C3

=




3
8

−1



B2

.

The key points of this example are:

• that every linear transformation becomes a matrix product once bases have been chosen for
the domain and target spaces, and

• that the matrix involved depends on the choice of bases,

and definitely not that this is a recommended method for differentiating polynomials, especially
not the second version of it!

Now suppose that Φ : V → W is a linear transformation of finite dimensional vector spaces.
There are a couple of important subspaces, of U and V respectively, associated with Φ.

Definition 3.2.2. The kernel of Φ , denoted kerΦ, is the set of elements of V whose image is the zero
vector of W.

kerΦ = {v ∈ V : Φ(v) = 0W} ⊆ V .

Definition 3.2.3. The image of Φ , denoted imageΦ, is the subset of W consisting of the images of all
the elements of V .

imageφ = {φ(v) : v ∈ V} ⊆ W.

Since every linear transformation can be defined in terms of matrices, the concepts of kernel
and image also have a matrix version

Example 3.2.4. For the linear transformation from R3 to R2 defined as left multiplication by the matrix

A =

�
2 3 1
1 −2 1

�
(as in Example 3.2.1 above), the kernel consists of all vectors




x
y
z


 for which

�
2 3 1
1 −2 1

�


x
y
z


 =

�
0
0

�
.

In the matrix context, this is referred to as the (right) nullspace of A.

We can find it by row reduction; in this example it consists of all vectors of the form t




−5
1
7


 where t ∈ R

- a vector subspace of dimension 1 of R3.

The image of this linear transformation is the subspace of R2 consisting of all products of A with vectors
in R3 - this is the linear span of the three columns of A. In the matrix context, it is called the column space
of A. In this example, it is all of R2, since the first two columns of A (for example) span R2.
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We can note that in this example, the kernel (nullspace) and image (columnspace) have dimension 1
and 2, and 1+2=3, and 3 is the dimension of the domain R3. This is not a coincidence, but a case of the
Rank-Nullity Theorem.

If φ : V → W is a linear transformation, the kernel and image of Φ are subspaces of V and W
respectively. To see this:

• for kerφ: Suppose that u, v ∈ kerφ. Then

φ(u+ v) = φ(u) + φ(v) = 0W + 0W = 0w,

so kerφ is closed under addition in V .
If u ∈ kerφ and λ ∈ F, then

φ(λu) = λφ(u) = λ0W = 0W ,

so λu ∈ kerφ and kerφ is closed under multplication by scalars.

• for imageφ: Suppose that w, z ∈ imageφ. Then w = φ(u) and z = φ(v) for some u and v in
V , and

w+ z = φ(u) + φ(v) = φ(u+ v),

so w+ z ∈ imageφ and imageφ is closed under addition in W.
If w ∈ kerφ and λ ∈ F, then w = φ(u) for u ∈ V , and

λw = λφ(u) = φ(λu),

so λw ∈ imageφ and imageφ is closed under multplication by scalars.

Now we come to the Rank-Nullity Theorem, which relates the dimensions of the kernel, image
and domain of a linear transformation. Equivalently, it relates the dimensions of the nullspace
and column space of a matrix to the number of columns. The dimension of the image of a linear
trasformation is called its rank, and the dimension of the kernel is called the nullity.

Theorem 3.2.5. Rank-Nullity Theorem Let φ : V → W be a linear transformation, where V and W are
finite-dimensional vector spaces over a field F. Then

dim(kerφ) + rankφ = dimV .

Proof. Write n for dimV and k for dim(kerφ). Let {v1, . . . vk} be a basis of kerφ. This may be
extended to a basis B = {v1, . . . , vk, vk+1, . . . , vn} of V . Since B spans V , every element of imagephi
has the form

φ(a1v1 + · · ·+ akvk + ak+1vk+1 + · · ·+ anvn) = φ(ak+1vk+1 + · · ·+ anvn)

= ak+1φ(vk+1) + · · ·+ anφ(vn),

for some scalars ak+1, . . . ,an (and a1, . . . ,ak). It follows that the set B � = {φ(vk), . . . ,φ(vn)} ⊆ W
is a spanning set of imageφ. We now show that B � is a basis of imageφ, by showing that it is
linearly independent. Suppose not, and suppose that

ck+1φ(vk+1) + · · ·+ cnφ(vn) = 0W

for some scalars ck+1, . . . , cn. Then

φ(ck+1vk+1 + · · ·+ cnvn) = 0W =⇒ ck+1vk+1 + · · ·+ cnvn ∈ kerφ.

But this means that ck+1vk+1 + · · · + cnvn is a linear combination of v1, . . . , vk, contrary to the
linear independence of {v1, . . . , vk, vk+1, . . . , vn}.

We conclude that B � is a basis of imageφ, which means that the image of φ has dimension
n− k (this is the rank of φ), and so

dim(kerφ) + rankφ = k+ n− k = n = dimV ,

as required.
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Theorem 3.2.6. Rank-Nullity Theorem, matrix version Let A be any m×n matrix, with entries in a field
F. Then n is the sum of the dimension of the right nullspace of A and the dimension of the column space of
A.

The dimension of the columns space of a matrix A is called the column rank of A.

LEARNING OUTCOMES FOR THIS SECTION

1. To recall the defintion of a linear transformation
as a function between vector spaces that respects the addition and scalar multiplication
operations.

2. To note that left multiplication by any m× n matrix is a linear transformation from Fn to Fm,
and that the columns of the matrix are the images of the standard basis vectors of Fn

3. That every linear transformation can be represented as left multiplication by a matrix,
after choosing bases for the domain and target spaces. For relatively small and manageable
examples, you should be able to write down the matrix that does this, and realize that it
depends on the choice of basis (we will come back to this point).

4. To recognize the terms kernel, image, nullspace, nullity, rank and column space.

5. To be able to state and interpret the Rank-Nullity Theorem, in its versions for matrices and for linear
transformations
The proof is important too, but understanding the statement is more important. One way
to think of it informally is that if we apply a linear transformation to a space of dimension
n, the image need not have the full dimension n, because some of the elements might be
mapped to zero, and so not be “recoverable” in the image (these are the elements of the
kernel). But the full dimension n has to be accounted for by the combination of the kernel
or the image - their dimensions must add up to n.

3.3 Similarity

In this section we will consider the algebraic relationship between two square matrices that rep-
resent the same linear transformation, from a vector space to itself, with respect to different bases.

Example 3.3.1. Let T : R3 → R3 be the linear transformation defined by v → Av, where

A =



−2 2 1

4 5 −1
−4 −8 3




Let B be the (ordered) basis of R3 with elements b1 =




1
0
4


 , b2 =




2
−1

0


 , b3 =




4
0
2




What is the matrix A � of T with respect to B?

The columns of A � have the B-coordinates of T(b1), T(b2) and T(b3).

T(b1) =




−2 2 1
4 5 −1

−4 −8 3






1
0
4


 =




2
0
8


 = 2b1 =⇒ [T(b1)]B =




2
0
0




T(b2) =




−2 2 1
4 5 −1

−4 −8 3






2
−1

0


 =




−6
3
0


 = −3b2 =⇒ [T(b2)]B =




0
−3

0




T(b3) =




−2 2 1
4 5 −1

−4 −8 3






0
−1

2


 =




0
−7
14


 = 7b3 =⇒ [T(b3)]B =




0
0
7



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We conclude that the matrix of T with respect to B � is

A � =




2 0 0
0 −3 0
0 0 7


 .

This means: for any v ∈ R3,
[T(v)]B = A �[v]B.

The relation of similarity. Staying with this example for now, we consider the relationship be-
tween A and A � from another viewpoint. Let P be the matrix with the basis vectors from B as
columns. From Section 3.1, we know that P−1 is the change of basis matrix from the standard ba-
sis to B. This means that for any element v of R3, its B-coordinate are given by the matrix-vector
product

[v]B = P−1v.

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

v = P[v]B.

So P itself is the change of basis matrix from B to the standard basis. Suppose we only knew
about A (and had not already calculated A �). We have a basis B whose columns form the matrix
P. To figure out the matrix of T with respect to B:

1. Start with an element of R3, written in its B-coordinates: [v]B

2. Convert the vector to its standard coordinates (so that we can apply T by multiplying by A):
this means taking the product P[v]B

3. Now apply T : this means taking the product AP[v]B. This vector has the standard coordi-
nates of T(v).

4. To convert this to B-coordinates, apply the change of basis matrix from standard to B, which
is P−1: this means taking the product P−1AP[v]B. This vector has the B-coordinates of T(v).

5. Conclusion: For any element v of R3, the B-coordinates of T(v) are given by

(P−1AP)[v]B.

This conclusion is saying that the matrix of T with respect to B is P−1AP, where A is the matrix
of T with respect to the standard basis, and P is the matrix with the (standard) elements of B as
columns.

Definition 3.3.2. Let F be a field. Two matrices A and B in Mn(F) are similar if there exists an invertible
matrix P ∈ Mn(F) for which B = P−1AP.

Notes

1. Two distinct matrices in Mn(F) are similar if and only if they represent the same linear
transformation from Fn to Fn, with respect to different bases.

2. As the examples A and A � above show, it is not generally easy to tell by glancing at a pair
of square matrices whether they are similar or not, but there is one feature that is easy to
check. The trace of a square matrix is the sum of the entries on the main diagonal, from top
left to bottom right. If two matrices are similar, they have the same trace.

3. Similar matrices also have some other features in common, including having the same de-
terminant. But we have not discussed determinants yet (coming soon).

Item 2. above is a consequence of the following lemma.

Lemma 3.3.3. Let A,B ∈ Mn(F). Then trace(AB) = trace(BA).
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Consequence: For any square matrix A and any invertible matrix P, both in Mn(F), trace(P−1AP) =
trace(AP)P−1 = traceA, so similar matrices always have the same trace.

Proof. (of the Lemma). We calculate the trace of AB in terms of the entries of A and B.

trace(AB) =

n�

i=1

(AB)ii

=

n�

i=1

(sumn
k=1AikBki) .

This is the sum over all positions (i,k) of a n× n matrix of the expressions

(entry in (i, k)-position of A)× (entry in (k, i)-position of B).

This sum does not change if the roles of A and B are switched, so AB and BA have the same
trace.

In Example 3.3.1, we found that the 3 × 3 matrix A is similar to the diagonal matrix A � =
diag(2. − 3, 7). We say that A is diagonalizable, which means that it is similar to a diagonal matrix.
It T : R3 → R3 is left multiplication by A, then A � is the matrix of T with respect to the basis B =
(b1,b2,b3), and the basis elements b1,b2,b3 are the columns of the matrix P for which P−1AP =
A �.
Two (equivalent) observations about this setup:

1. From the diagonal form of A � we have T(b1) = 2b1, T(b2) = −3b2 and T(b3) = 7(b3). This
means that each of the basis elements b1,b2,b3 is mapped by T to a scalar multiple of itself
- each of them is an eigenvector of T .

2. We can rearrange the version P−1AP = A � to AP = PA �. Bearing in mind that P =


| | |

b1 b2 b3
| | |


 and that A � = diag(2,−3, 7), this is saying that

A




| | |

b1 b2 b3
| | |


 =




| | |

b1 b2 b3
| | |






2 0 0
0 −3 0
0 0 7


 =⇒




| | |

Ab1 Ab2 Ab3
| | |


 =




| | |

2b1 −3b2 7b3
| | |




This means that Ab1 = 2b1, Ab2 = −3b2 and Ab3 = 7b3, so that B = {b1,b2,b3} is a basis of
R3 consisting of eigenvectors of A.

Definition 3.3.4. Let T : V → V be a linear transformation from a vector space V to itself. An eigenvec-
tor of T is a non-zero element v of V for which T(v) = λv for some scalar λ (called the eigenvalue of T to
which v corresponds).

In this situation, T can be represented by a diagonal matrix if and only if V has a basis consist-
ing of eigenvectors of T .

Definition 3.3.5. (Matrix Version). Let A ∈ Mn(F). An eigenvector of A is a non-zero vector v ∈ Fn

for which Av = λv for a scalar λ (called the eigenvalue of A to which v corresponds).

The matrix A is diagonalizable (similar to a diagonal matrix) if and only if there is a basis of
Fn consisting of eigenvectors of A.

LEARNING OUTCOMES FOR SECTION 3.3

1. To be able to explain the meaning of the matrix of a linear transformation with respect to a particular
basis

2. To be able to describe the relation of similarity for matrices
and explain its meaning in terms of linear transformations.

3. To know what it means for a matrix (or linear transformation) to be diagonalizable.
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3.4 Eigenvectors

Definition 3.4.1. Let T : V → V be a linear transformation, where V is a finite dimensional vector space.
A non-zero element v of V is a eigenvector of T if T(v) is a scalar multiple of v.

If v is an eigenvector of T , then the 1-dimensional subspace of V spanned by v, which consists
of all scalar multiples of v, is mapped to itself by T . It is said to be a T -invariant line.

Definition 3.4.2. If v is an eigenvector of T , then T(v) = λv for some scalar λ, and λ is called the
eigenvalue of T to which v corresponds.

Here is the matrix version.

Definition 3.4.3. Let A ∈ Mn(F). A vector v ∈ Fn is an eigenvector of A if Av = λv for some scalar
λ ∈ F, called the eigenvalue of A to which v corresponds.

Given a matrix A and a vector v, it is quite a straightforward task to determine whether v is an
eigenvector of A, and to determine the corresponding eigenvalue if so - just calculate the matrix-
vector product Av and see if it is a scalar multiple of v. In fact, given a vector v, we can construct
a matrix that has v as an eigenvector, with our favourite scalar as an eigenvalue.

Example 3.4.4. Find a matrix A ∈ M3(R) that has v =




1
2
3


 as an eigenvector, corresponding to the

eigenvalue 28.

To do this, write u1,u2,u3 as the three rows of A. What we need is that u1v = 28(1) = 28,
u2v = 28(2) = 56, u3v = 28(3) = 84. The easy way to arrange this is to choose u1 = (28 0 0),
u2 = (0 28 0), u3 = (0 0 28), so that A = 28I3. This answer is correct but we can find others, and
the conditions on u1,u2,u3 are independent. For example we can choose

u1 = (3 2 3), u2 = (0 − 2 20), u3 = (5 2 25)

to get A =




3 2 3
0 −2 20
5 2 25


, and it is easily confirmed that Av = 28v.

Exercise: Show that the set of matrices in M3(R) that satisfy Mv = 28v is a subspace of M3(R).

Example 3.4.5. Show that
�

3
4

�
is an eigenvector of

�
−2 9

8 4

�
and find the corresponding eigen-

value. �
−2 9

8 4

� �
3
4

�
=

�
30
40

�
= 10

�
3
4

�
.

The corresponding eigenvalue is 10.

Diagonal matrices.
A harder problem is to find the eigenvectors of a matrix or linear trasformation, given only

the matrix or linear transformation itself. For example, suppose that

B =




5 6 2
0 −1 −8
1 0 −2


 .

Finding an eigenvector of B means finding solutions for x,y, z and λ, to the following system of
equations, where the values of x,y, z are not all zero.




5 6 2
0 −1 −8
1 0 −2





x
y
z


 = λ



x
y
z




If λ is regarded as a variable, this is not a system of linear equations. Where to begin?
It turns out that the key to making progress is to find the eigenvalues first, even if it’s the

eigenvectors that we want. To see why, we show that the number of distinct eigenvalues of a
n× n matrix cannot exceed n.
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Theorem 3.4.6. Let A ∈ Mn(F) and let v1, . . . , vk be eigenvectors of A in Fn, corresponding to distinct
eigenvalues λ1, . . . , λk of A. Then {v1, . . . , vk} is a linearly independent subset of Fn.

Idea of Proof : First suppose that k = 2, and suppose that a1v1 + a2v2 = 0, for scalars a and b in F.
We need to show that a1 = a2 = 0. Multiplying the expression a1v1 + a2v2 on the left by A, we
have

a1Av1 + a1Av2 = 0 =⇒ a1λ1v1 + a2λ2v2 = 0.

Multiplying the same expression by the scalar λ1 gives

a1λ1v1 + a2λ1v2 = 0.

Subtracting one of these expressions from the other gives

a2(λ1 − λ2)v2 = 0.

Now v2 is not the zero vector because it is an eigenvector of A, and λ1 − λ2 is not zero, because λ1
and λ2 are distinct eigenvalues. So it must be that a2 = 0. Since a1v1 + a2v2 = 0, it follows that
a1 = 0 also, since v1 is not the zero vector (begin an eigenvector of A). We conclude that the zero
vector can be written as a linear combination of v1 and v2 only if both coefficients are zero, which
means that {v1, v2} is a linearly independent set.

The proof in the general situation uses exactly this idea.

Proof. If {v1, . . . , vk} is linearly dependent, then there are expressions for the zero vector as a linear
combination of v1, . . . , vk in which the coefficients are not all zero. Let d be the least number of
non-zero coefficients in any such expression, and (after reordering the vi and λi if necessary),
suppose that

a1v1 + · · ·+ advd = 0,

with d � 2 and each ai is a non-zero element of F. Multiplying this equation respectively by A
(on the left) and by λ1 gives

a1λ1v1 + a2λ2v2 + · · ·+ adλdvd = 0
a1λ1v1 + a2λ1v2 + · · ·+ adλ1vd = 0

Subtracting the second equation from the first gives

a2(λ2 − λ1)v1 + a3(λ3 − λ1)v2 + · · ·+ ad(λd − λ1)vd = 0.

None of the coefficients in this linear combination of v2, . . . , vd are zero, since the ai are all non-
zero and the λi are all distinct. So this is a non-trivial expression for the zero vector as a linear
combination of v1, . . . , vk with fewer than d non-zero coefficients, which contradicts the choice of
d. We conclude that {v1, . . . , vk} is a linearly independent subset of Fn.

The following consequence of Theorem 3.4.6 suggests that we may have some chance of being
able to find the eigenvalues of a n× n matrix, or at least that there are not too many of them.

Corollary 3.4.7. Let A ∈ Mn(F). Then A has at most n distinct eigenvalues in F.

Proof. If A has k distinct eigenvalues, with corresponding eigenvectors v1, . . . , vk in Fn, then k
cannot exceed the dimension of Fn, since {v1, . . . , vk} is a linearly indepedent set in Fn. Hence
k � n.

The following consequence is also important and useful.

Corollary 3.4.8. Let A ∈ Mn(F) and suppose that A has n distinct eigenvalues λ1, . . . , λn in F. Then A
is diagonalizable, and A is similar to the matrix diag(λ1, . . . , λn).

Proof. Let v1, . . . , vn be eigenvectors of A in Fm, corresponding to λ1, . . . , λn respectively. Then
(v1, . . . , vn) is an (ordered) basis of Fn, by Theorem 3.4.6. If P is the matrix with columns v1, . . . , vn,
then P−1AP = diag(λ1, . . . , λn).
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If a n × n matrix has fewer than n distinct eigenvalues, then it may or may not be diagonal-
izable. The two examples below indicate two ways in which a matrix in Mn(F) could fail to be
diagonalizable in Mn(F).

Example 3.4.9. Let A =

�
1 1
0 1

�
in M2(R).

Suppose that
�
x
y

�
is an eigenvector of A. Then

�
1 1
0 1

� �
x
y

�
= λ

�
x
y

�
=⇒ x+ y = λx

y = λy

The second equation says that y = 0 or λ = 1. If y = 0, then the first equation says x = λx. Since
x and y cannot both be 0 in an eigenvector, it follows that λ = 1 anyway. Thus λ = 1 is the only

possible eigenvalue of A. The non-zero vector
�
x
y

�
is an eigenvector of A corresponding to λ = 1

if and only if x + y = x and y = y. The first equation says y = 0, and x may have any value. The

eigenvectors of A are all vectors of the form
�
x
0

�
, where x �= 0 in R, i.e. all scalar multiples of

�
1
0

�
.

These comprise only a 1-dimensional subspace of R2, os R2 does not have a basis consisting of
eigenvectors of A, and A is not diagonalizable.

The point of the following example is to show that if A is a matrix in Mn(F), the eigenvalues
of A may not be in F but in a bigger field.

Example 3.4.10. Let B =

�
0 −1
1 0

�
in M2(R).

Note that B is the matrix of a counter-clockwise rotation through pi
2 about the origin in R2.

From that geometric intepretation we can see that B has no eigenvector in R2, since no line in R2

is preserved by this rotation. We can also see this algebraically.
�

0 −1
1 0

� �
x
y

�
= λ

�
x
y

�
=⇒ y = λx

−x = λy
.

Looking at both of these equations, we have y = λx = λ(−λy) −→ y = −λ2y.

If y = 0, then x = 0 which does not give an eigenvector. If y �= 0, then y = −λ2y means
λ2 = −1, which is not satisfied by any real number λ. This means that B has no real eigenvalue
and no eigenvector in R2. However, if we allow complex values for λ, then λ = i and λ = −i
satisfy λ2 = −1. To find corresponding eigenvectors:

�
0 −1
1 0

� �
x
y

�
= i

�
x
y

�
=⇒ y = ix

−x = iy

So
�

1
i

�
is an eigenvector corresponding to the eigenvalue i.

For the eigenvalue −i: �
0 −1
1 0

� �
x
y

�
= −i

�
x
y

�
=⇒ y = −ix

−x = −iy

So
�

1
−i

�
is an eigenvector corresponding to the eigenvalue i.

We conclude that B is not diagonalizable in M2(R) but that it is similar in M2(C) to the diagonal

matrix
�
i 0
0 −i

�
.

Learning Outcomes for Section 3.4

1. To define an eigenvector of a linear transformation or of a square matrix.

2. To know that eigenvectors corresponding to different eigenvalues are linearly independent.

3. And that this means a n× n matrix can have at most n distinct eigenvalues

4. and that it is diagonalizable if it does have n distinct eigenvalues.
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3.5 The Characteristic Polynomial

In this section we will discuss how to determine the eigenvalues of a given matrix. In practice, we
cannot always precisely determine them, but we can write down a polynomial whose coefficients
depend on the entries of the matrix, and whose roots are the eigenvalues.

Example 3.5.1. Find a matrix P with P−1AP diagonal, where A =

�
2 2
1 3

�

To answer this, we need to find two linearly independent eigenvectors of A. These are non-
zero solutions of
�

2 2
1 3

� �
x
y

�
= λ

�
x
y

�
=⇒ 2x+ 2y = λx

x+ 3y = λy
=⇒ 0 = (λ− 2)x− 2y

0 = −x+ (λ− 3)y =⇒
�
λ− 2 −2
−1 λ− 3

� �
x
y

�
=

�
0
0

�

So we are looking for non-zero solutions
�
x
y

�
of the system

�
λ− 2 −2
−1 λ− 3

� �
x
y

�
=

�
0
0

�

These can occur only if the coefficient matrix is non-invertible. If it is invertible, the only solution
is x = y = 0.

A 2 × 2 matrix is non-invertible if and only if its determinant is 0. The determinant of the 2 × 2

matrix
�
a b
c d

�
is ad− bc.

det
�
λ− 2 −2
−1 λ− 3

�
= (λ− 2)(λ− 3)− (−2)(−1) = λ2 − 5λ+ 4.

The characteristic polynomial of A is

det(λI−A) = λ2 − 5λ+ 4 = (λ− 4)(λ− 1).

The eigenvalues of A are the solutions of the characteristic equation det(λI − A) = 0, 1 and 4. The
eigenspace of A corresponding to λ = 1 is the set of all solutions of the system

�
2 2
1 3

� �
x
y

�
= 1

�
x
y

�
=⇒

�
1 − 2 −2
−1 1 − 3

� �
x
y

�
=

�
0
0

�

This is the nullspace of the matrix 1I−A =

�
−1 −2
−1 −2

�
, which is

��
−2t

t

�
, t ∈ R

�
.

An eigenvector of A for λ = 1 is any non-zero element of this space, for example
�
−2

1

�
.

The eigenspace of A corresponding to λ = 4 is the nullspace of the matrix 4I − A =

�
2 −2

−1 1

�
,

which is ��
t
t

�
, t ∈ R

�
.

An eigenvector of A for λ = 4 is any non-zero element of this space, for example
�

1
1

�
.

Conclusion: If P is a matrix whose columns are eigenvectors of A corresponding respectively to the

eigenvalues 1 and 4, for example P =

�
−2 1
1 1

�
, then P−1AP =

�
1 0
0 4

�
. Multiplying each column

of this P by a non-zero scalar gives alternative choices of P, with the same diagonal matrix P−1AP.

Switching the two columns of P would give a matrix Q with Q−1AQ =

�
4 0
0 1

�
.
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3.5.1 The Determinant (a digression)

For any 2 × 2 matrix A =

�
a b
c d

�
, we have

�
a b
c d

� �
d −b

−c a

�
=

�
ad− bc 0

0 ad− bc

�
= (ad− bc)I2.

From this matrix equation we have the following observations:

• If ad − bc = 0, then A is not invertible, because the columns
�

d
−c

�
and

�
−b
a

�
are in its

nullspace (and these are both zero only if A is the zero matrix).

• If ad− bc �= 0, then the equation shows that A−1 =
1

ad− bc

�
d −b

−c a

�
.

• The matrix A has an inverse if and only if ad−bc �= 0. This means that the number ad−bc
tells us whether or not the columns of A form a basis of F2 (or R2).

The equation above also prompts the following definitions

• The number (or field element) ad−bc is the determinant of the matrix A =

�
a b
c d

�
, denoted

by det(A) or sometimes |A|.

• The matrix A =

�
d −b

−c a

�
is the adjugate (sometimes called the adjoint) of A, denoted by

adj(A).

The version of the above equation for a 3 × 3 matrix A =



a b c
d e f
g h i


 is the following:



a b c
d e f
g h i






ei− fh −bi+ ch bf− ce
−di+ fg ai− cg −af+ cd
dh− eg −ah+ bg ae− bd


 = (aei− afh− bdi+ bfg+ cdh− ceg)I3.

This equation can be checked directly. The expression (aei− afh− bdi+ bfg+ cdh− ceg) is the
determinant of A, and the adjugate of A is the matrix on the right. Its entries are the determinants
of the nine 2 × 2 submatrices of A (some with a sign change). To see why this definition of the
3 × 3 determinant is consistent with the 2 × 2 version, we can write it as follows:



a b c
d e f
g h i







����
e f
h i

���� −

����
b c
h i

����
����
b c
e f

����

−

����
d f
g i

����
����
a c
g i

���� −

����
a c
d f

����
����
d e
g h

���� −

����
a b
g h

����
����
a b
d e

����




= (aei− afh− bdi+ bfg+ cdh− ceg� �� �
det(A)

)I3.

Definition 3.5.2. The minor Mi,j of the entry in the (i, j) position of a 3× 3 matrix A is the determinant
of the 2 × 2 matrix that remains when Row i and Column j are deleted from A.

Definition 3.5.3. The cofactor Ci,j of the entry in the (i, j) position of a 3 × 3 matrix A is either equal to

Mi,j or to −Mi,j, according to the following pattern of signs:



+ − +
− + −
+ − +




Definition 3.5.4. The adjugate of the 3 × 3 matrix A is the matrix that has Cj,i in the (i, j)-position. It
is the transpose of the matrix of cofactors of A.

39



By looking at any of the three entries on the main diagonal of the product A× adj(A), we can
give the following description of the determinant of a 3 × 3 matrix.

Definition 3.5.5. The determinant of a 3 × 3 matrix is A can be found by choosing any row or column of
A, multplying each entry of that row or column by its own cofactor, and adding the results.

NOTES

1. Each of the definitions above applies to n × n matrices in general, and gives us a way to
recursively define a n× n determinant, in terms of (n− 1)× (n− 1) determinants.

2. The cofactor expansion method, described in Definition 3.5.5 above, is not generally the most
efficient way to compute a determinant (it is ok in the 3 × 3 case). But it can be taken as the
definition of a determinant.

3. In some special cases, the determinant is easier to compute. If A is upper or lower triangular,
then det(A) is the product of the entries on the main diagonal of A. If A has a square k× k
block A1 in the upper left, a square (n−k)× (n−k) block in the lower right, and only zeros
in the lower left (n− k)× k region, then det(A) = det(A1)det(A2).

4. For a pair of n × n matrices A and B, det(AB) = det(A)det(B). This is the multplicative
property of the determinant, or the Cauchy-Binet formula. It is not obvious at all.

We note the following consequence of item 4 above.

Theorem 3.5.6. If A and B are similar matrices in Mn(F), then they have the same determinant and the
same characteristic polynomial.

Proof. Since B is similar to A, B = P−1AP for some invertible matrix P. Then det(B) = det(P−1AP) =
det(APP−1) = det(A). The characteristic polynomial of B is det(λIn − P−1AP) = det(P1(λIn −
A)P) = det(λIn −A).

3.5.2 Algebraic and Geometric Multiplicity

Example 3.5.7. Using cofactor expansion by the first column, we find that the characteristic poly-

nomial of B =




5 6 2
0 −1 −8
1 0 −2


 is

det(λI3 − B) = det



λ− 5 −6 −2

0 λ+ 1 8
−1 0 λ+ 2




= (λ− 5) ((λ+ 1)(λ+ 2)− 0(8)) + (−1) ((−6)(8)− (λ+ 1)(−2))
= (λ− 5)(λ2 + 3λ+ 2)− (2λ− 46)
= λ3 − 2λ2 − 15λ+ 36
= (λ− 3)(λ2 + λ− 12)
= (λ− 3)(λ+ 4)(λ− 3)
= (λ− 3)2(λ+ 4)

The eigenvalues of B are 3 (occurring twice as a root of the characteristic polynomial), and −4
(occurring once). We say that 3 has algebraic multplicity 2 and −4 has algebraic multiplicity 1 as an
eigenvalue of B. The geometric multplicity of each eigenvalue is the dimension of its corresponding
eigenspace.

The eigenspace of B corresponding to λ = 3 is the nullspace of the matrix

3I3 − B =



−2 −6 −2

0 4 8
−1 0 5



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