
Lecture 7: Linear Transformations

Linear transformations are the primary functions between vector spaces
that are of interest in linear algebra. For now we will stick to linear
transformations between spaces of real column vectors.

Definition 2

Let m and n be positive integers. A linear transformation T from Rn to
Rm is a function T : Rn → Rm that satisfies

T (u + v) = T (u) + T (v), and

T (λv) = λT (v),

for all u and v in Rn, and all scalars λ ∈ R.
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The Matrix of a Linear Transformation

Suppose that T : R3 → R2 is a linear transformation. Then we can

calculate the image under T of any vector




a
b
c


, if we know the

images under T of the standard basis vectors




1
0
0


,




0
1
0


 and




0
0
1


. From the definition, we have

T




a
b
c


 = aT




1
0
0


+ bT




0
1
0


+ cT




0
0
1


 = A




a
b
c


 ,

where A is the 2× 3 matrix that has the images of the three standard
basis vectors as its three columns.
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Matrix multplication is composition

Suppose that the images of the three standard basis vectors under T are
respectively

�1
2

�
,
�1
4

�
and

�−2
3

�
. Then the matrix A of T is

A =

�
1 1 −2
2 4 3

�
.

For any vector v ∈ R3, its image under T is the matrix-vector product
Av .
Now suppose that S : R2 → R2 is a linear transformation whose matrix is

B =

�
1 −1
2 0

�
. This means that the images under S of

�1
0

�
and

�0
1

�

are respectively the two columns of S . Now the composition S ◦ T is a
linear transformation from R3 to R2, so it is represented by a matrix.

S ◦ T (v) = S(Tv) = S(Av) = B(Av) = (BA)v .
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Three more concepts from matrix algebra

The n × n identity matrix For a positive integer n, the n × n identity
matrix, denoted In, is the n × n matrix whose entries in the
(1, 1), (2, 2), ... , (n, n) positions (the positions on the main diagonal) are
all 1, and whose entries in all other positions (all off-diagonal positions)
are 0. For example

I2 =

�
1 0
0 1

�
. I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The special property that In has is that is an identity element or neutral
element for matrix multplication. Multiplying another matrix by it has no
effect. This means

If A is any matrix with n rows, then InA = A, and

If B is any matrix with n columns, then BIn = B.

In particular, if C is a n × n matrix, then CIn = InC = C .
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The Inverse of a Matrix

Let A be a square matrix of size n × n. If there exists a n × n matrix B
for which AB = In and BA = In, then A and B are called inverses (or
multiplicative inverses) of each other. If it does not already have another
name, the inverse of A is denoted A−1.

Example In M2(Q), the matrices

�
3 2

−5 −4

�
and

�
2 1

−5
2 −3

2

�
are

inverses of each other.

Not every square matrix has an inverse. For example the 2× 2 matrix�
3 2

−6 −4

�
does not.

Exercise Prove that a square matrix can only have one inverse.
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The transpose of a matrix

Definition 3

The transpose of the m × n matrix A, which is denoted AT , is defined to
be the n ×m matrix which has the entries of Row 1 of A in its first
column, the entries of Row 2 of A in its second column, and so on.

Example If A =

�
1 −2 −3
2 0 4

�
, then AT =




1 2
−2 0
−3 4


.

For all relevant i and j , the (i , j) entry of AT is the (j , i) entry of A. If A
is m × n, then the products AAT and ATA always exist, and they are
square matrices of size m×m and n× n respectively. Moreover, they are
symmetric. A square matrix is symmetric if it is equal to its own
transpose.
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The transpose of a matrix product

Lemma 4

Let A and B be matrices for which the product AB is defined. Then
(AB)T = BTAT .

The lemma is saying that the transpose of the product A is the product
of the transposes of A and B, but in the opposite order.

Proof.

Suppose that the sizes of A and B are m × p and p × n respectively.
Choose an arbitrary position (i , j) in (AB)T . The entry in this position is

(AB)Tij = (AB)ji

=

p�

k=1

AjkBki

=

p�

k=1

BT
ikA

T
kj

= (BTAT )
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Elementary Row Operations and Matrix Algebra

Elementary row operations may themselves be interpreted as matrix
multiplication exercises.

We write Im for the m ×m identity matrix

We write Ei ,j for the matrix that has 1 in the (i , j)-position and
zeros everywhere else.

Theorem 5

Let A be a m×m matrix. Then elementary row operations on A amount
to multiplying A on the left by m ×m matrices, as follows:

1 Mutiplying Row i by the non-zero scalar α is equivalent to
multiplying A on the left by the matrix Im + (α− 1)Ei ,i .

2 Switching Rows i and k amounts to multiplying A on the left by the
matrix Im + Ei ,k + Ek,i − Ei ,i − Ek,i .

3 Adding α× Row i to Row k amounts to multiplying A on the left by
the matrix Im + αEk,i .
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Elementary Row Operations as Matrix Multiplication

Matrices of the three types described in Theorem 5 are sometimes
referred to as elementary matrices. They are always invertible, and their
inverses are also elementary matrices. The statement that every matrix
can be reduced to RREF through a sequence of EROs is equivalent to
saying that for every matrix A with m rows, there exists a m ×m matrix
B , which is a product of elementary matrices, with the property that BA
is in RREF.

Exercise 6

Write down the inverse of an elementary matrix of each of the three
types, and show that it is also an elementary matrix.
(Hint: Think about how to reverse an elementary row operation, with
another elementary row operation).

Exercise 7

Prove that every invertible matrix in Mn(R) is a product of elementary
matrices.
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Using Gauss-Jordan elimination to calculate matrix inverses

Suppose that A ∈ Mn(F), for some field F. If A is invertible, let
v1, v2, ... , vn be the columns of its inverse. Then

AA−1 = A




| | ... |
v1 v2 ... vn
| | ... |


 = A




| | ... |
Av1 Av2 ... Avn
| | ... |


 = In.

For each i , Avi is the ith column of the identity matrix, which has 1 in
position i and zeros elsewhere. This means that vi is the solution of the
linear system Avi = ei , where ei is column i of the identity matrix, and
the variables are the unknown entries of vi .
We need to this for each column, but we can combine this into a single
process by writing e1, e2, ... , en as n distinct columns in the “right hand
side” of a n × 2n augmented matrix.
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Example of inverse calculation

Example Find A−1 if A =




3 4 −1
1 0 3
2 5 −4


.

To calculate A−1, We apply Gauss-Jordan elimination to the 3× 6 matrix
below

A� =




3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1


 −→




1 0 0 3
2 −11

10 −6
5

0 1 0 −1 1 1
0 0 1 −1

2
7
10

2
5




We conclude

A−1 =




3
2 −11

10 −6
5

−1 1 1
−1

2
7
10

2
5


 .
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