
Lecture 3: Example (not in the lecture notes)

1. Solve the following linear system.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1

Step 1: Reduce the augmented matrix to RREF.



1 3 5 −9 5
3 −1 −5 13 5
2 −3 −8 18 1


 →



1 0 −1 3 2
0 1 2 −4 1
0 0 0 0 0




Step 2: Identify leading variables (x1, x2) and free variablse x3, x4, and
write the general solution.

(x1, x2, x3, x4) = (2 + t − 3s, 1− 2t + 4s, t, s) : t, s ∈ R
= (2, 1, 0, 0) + t(1,−2, 1, 0) + s(−3, 4, 0, 1) : t, s ∈ R.
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Example (Part 2)

2. Solve the following linear system.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1
2x1 − x2 − 3x3 + 4x4 = 1

We must describe all simultaneous solutions of the first three equations
that also satisfy the fourth. A solution of the first three has the form

(x1, x2, x3, x4) = (2 + t − 3s, 1− 2t + 4s, t, s),

for real numbers t and s. Insert this information into the fourth equation:

2(2+t−3s)−(1−2t+4s)−3t+4s = 1 =⇒ 3+t−6s = 1 =⇒ t = −2+6s.

The parameters t and s are no longer independently free.

(x1, x2, x3, x4) = (2 + (−2 + 6s)− 3s, 1− 2(−2 + 6s) + 4s,−2 + 6s, s)

= (3s, 5− 8s,−2 + 6s, s) : s ∈ R
= (0, 5,−2, 0) + s(3,−8, 6, 1) : s ∈ R.
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Example (Part 3)

3. Solve the following linear system.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1
2x1 − x2 − 3x3 + 4x4 = 1
3x1 − 2x2 − 2x3 − 5x4 = 10

Simultaneous solutions of the first four equations have the form

(x1, x2, x3, x4) = (3s, 5− 8s,−2 + 6s, s) : s ∈ R.

Check for values of s for which this also satisfies Equation 5:

3(3s)− 2(5− 8s)− 2(−2 + 6s)− 5s = −6 + 8s = 10 =⇒ 8s = 6, s = 2.

Unique solution: (x1, x2, x3, x4) = (6,−11, 10, 2).
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Example (Part 4)

3. Show that the following linear system is inconsistent.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1
2x1 − x2 − 3x3 + 4x4 = 1
3x1 + 2x2 + 2x3 − 5x4 = 3

Simultaneous solutions of the first four equations have the form

(x1, x2, x3, x4) = (3s, 5− 8s,−2 + 6s, s) : s ∈ R.

Check for values of s for which this also satisfies Equation 5:

3(3s) + 2(5− 8s) + 2(−2 + 6s)− 5s = 6 �= 3.

No simultaneous solution of the first four equations also satisfies the last
one, the system is inconsistent.

Dr Rachel Quinlan MA283 Linear Algebra 24 / 28



Review of Matrix Algebra

Matrix addition and multiplication by scalars
Two matrices can be added together if they have the same size; in this
case their sum is obtained by just adding the entries in each position.

The m × n zero matrix is the m × n matrix whose entries are all zeros. It
is the identity element for addition of m × n matrices - this means that
addition it to another m × n matrix has no effect.

A matrix can be multiplied by a scalar; this means multiplying each of its
entries by that scalar. With these operations of addition and scalar
multiplication, the set of m × n matrices over a field F is a vector space
over F.
A vector space is (more or less) an algebraic structure whose elements
can be added, subtracted and multiplied by scalars, subject to some
compatibility conditions.
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Matrix Multiplication I

We can sometimes also multiply matrices.

Definition 2

A column vector is a matrix with one column. A row vector is a matrix
with one row.

Definition 3

Let A be a m × n matrix and let v be a column vector with n entries.
Then the matrix-vector product Av is the column vector obtained by
taking the linear combination of the columns of A whose coefficients are
the entries of v . It is a column vector with m entries.

Example
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