Lecture 19: Normal Subgroups

Definition A subgroup N of a group G is normal in $G (N \leq G)$ if for every $g \in G$ the left coset gN is equal to the right coset Ng.

Equivalent Definition A subgroup N is normal in G if $gng^{-1} \in N$ for every $n \in N$ and $g \in G$. This means N is a union of conjugacy classes of G, as N contains all G-conjugates of each of its elements.

Version 1 \implies Version 2 Suppose that gN = Ng for all $g \in G$, and let $n \in N$. Then $gn \in Ng$, so gn = n'g for some $n' \in N$. Thus $gng^{-1} \in N$, and the *G*-conjugacy class of *n* is contained in *N*.

Version 2 \implies Version 1 Suppose that N is a union of conjugacy classes, and let $g \in G$. Then, for each $n \in N$,

 $gng^{-1} \in N \implies gn = n'g$ for some $n' \in N$, so $gn \in Ng$. Thus $gN \subseteq Ng$, and the same argument applied to $g^{-1}ng$ shows that $gN \subseteq Ng$.

Examples of Normal Subgroups

- Every group is a normal subgroup of itself, and the trivial subgroup is a normal subgroup of every group.
- Every subgroup of an abelian group is normal (conjugacy classes in abelian groups are single elements).
- Any subgroup that is the kernel of a group homomorphism is normal.
- In D₆ the subgroup consisting of the three rotations is normal, and the subgroup consisting of any one reflection is non-normal.
- Any subgroup of index 2 in any group is normal.

Kernels of group homomorphisms are normal subgroups

Let $\phi : G \to H$ be a homomorphism of groups. Write N for the kernel of ϕ , so $N = \ker \phi = \{x \in G : \phi(x) = \operatorname{id}_H\}$. Recall from Week 10 that ker ϕ is a subgroup of G.

Claim $N \leq G$. Proof Let $n \in N$. We must show that $g \star_G n \star_G g^{-1} \in N$ for all $g \in G$. So choose $g \in G$. Then

$$\phi(g \star_G n \star_G g^{-1}) = \phi(g) \star_H \phi(n) \star_H \phi(g^{-1})$$
$$= \phi(g) \star_H \operatorname{id}_H \star_H \phi(g^{-1})$$
$$= \phi(g) \star_H \phi(g^{-1})$$
$$= \phi(g \star_G g^{-1})$$
$$= \phi(\operatorname{id}_G) = \operatorname{id}_H$$

So $g \star_G n \star_G g^{-1} \in N$ for all $n \in N$ and $g \in G$, and the kernel of a group homomorphism is always a normal subgroup of the domain.

Lecture 22: Quotient Groups

Let $\phi : G \to H$ be a group homomorphism with kernel N. We saw in Week 10 that the distinct elements of Im ϕ correspond exactly to the distinct cosets of N in G: two elements of G have the same image under ϕ if and only if they belong to the same (left or right) coset of N in G.

This means that the group operation in Im ϕ (or in H) can be interpreted as a binary operation on the set of cosets of N in G, with respect to which this set is a group.

To multiply two cosets of N in G: take elements x and y respectively from each coset. Take the element $x \star_G y$ in G. The coset to which this element belongs is the product of the orginal two cosets in G/N, the quotient group of G modulo N.

The outcome does not depend on the initial choice of x and y from the two cosets.

Quotient Groups

This can be formulated without the context of a homomorphism.

Let *N* be a normal subgroup of a group *G*. Define a multiplication \star on the set G/N of cosets of *N* in *G* by $xN \star yN = xyN$. This is well-defined: suppose $xN = x_1N$ and $yN = y_1N$. This means $x^{-1}x_1 \in N$ and $y^{-1}y_1 \in N$. Write $x^{-1}x_1 = n_x$ and $y^{-1}y_1 = n_y$. We need to know $xyN = x_1y_1N$, i.e. that $(xy)^{-1}x_1y_1 \in N$.

$$(xy)^{-1}x_1y_1 = y^{-1}x^{-1}x_1y_1 = y^{-1}\underbrace{x_1^{-1}x_1}_{n_x \in N}y = y^{-1}n_xy$$

Since $N \leq G$ and $n_x \in N$, the element $y^{-1}n_x$ belongs to the right coset Ny^{-1} , i.e. $y^{-1}n_x = ny^{-1}$ for some $n \in N$. Hence

$$(xy)^{-1}x_1y_1 = y^{-1}n_xy_1 = ny^{-1}y_1 = nn_y \in N,$$

and the multiplication operation on cosets is well-defined.

Quotient Groups (continued)

If G is a group with a normal subgroup N, we define a multiplication \star on the set G/N of cosets of N in G by $xN \star yN = xyN$.

- This multiplication is well-defined as shown in the last slide (this depends on the normality of N in G).
- This multiplication operation is associative since it comes from the associative operation of G;
- G/N has N (= id N) as an identity element;
- the element xN of G/N has $x^{-1}N$ as its inverse.

So G/N is a group, called the quotient group G modulo N.

Examples

P

 The subgroup 5ℤ of the group of integers under addition is the group consisting of all multiples of 5. The cosets of 5ℤ in ℤ are the congruence classes of integers modulo 5,

$$\bar{0}=5\mathbb{Z},\ \bar{1}=1+5\mathbb{Z},\ \bar{2}=2+5\mathbb{Z},\ \bar{3}=3+5\mathbb{Z},\ \bar{4}=4+5\mathbb{Z}.$$

The quotient group $\mathbb{Z}/5\mathbb{Z}$ is the additive group of integers modulo 5. The elements are the classes above, and addition is defined by adding representatives of classes modulo 5.

2. The subgroup $N = \{id, \mathbb{R}_{180}\}$ of D_8 is normal. There are four cosets of N in D_8 . The group table for D_8/N is below

		N	$R_{90}N$	$T_L N$	$T_M N$
	N	N	$R_{90}N$	$T_L N$	$T_M N$
м	$R_{90}N$	R ₉₀ N	Ν	$T_M N$	$T_L N$
	$T_L N$	$T_L N$	$T_M N$	Ν	$R_{90}N$
N	$T_M N$	T _M N	$T_L N$	R ₉₀ N	Ν