
Lecture 18: Cayley’s Theorem
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Each row in the table for D6 details the permutation of the six

elements that results from composing everything on the left with

the element that labels the row. So we associate to each element

of D6 a different permutation of six objects (which happen to be

the six elements of D6). By taking this view we can interpret D6 as

a subgroup of S6. This is Cayley’s Theorem.



Isomorphism
An isomorphism between groups (G , ?G ) and (H, ?H) is a bijective

function φ : G → H with the property that

φ(x ?G y) = φ(x) ?H φ(y), for all x , y ∈ G .

This means that φ matches the elements of G with those of H, in

a way that matches the group operations too. The groups become

identical after relabelling their elements according to the matching.

Example The group of complex 4th roots of unity under

multiplication is isomorphic to group of integers modulo 4 under

addition.

(G4,×) 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1

(Z4,+) [0]4 [1]4 [2]4 [3]4
[0]4 [0]4 [1]4 [2]4 [3]4
[1]4 [1]4 [2]4 [3]4 [0]4
[2]4 [2]4 [3]4 [0]4 [1]4
[3]4 [3]4 [0]4 [1]4 [2]4



Cayley’s Theorem - statement and outline proof

Theorem (Cayley, 1854) Let G be a group of order n. Then G is

isomorphic to a subgroup of Sn.

Outline proof G acts on the set of its own elements by left

multiplication. For g ∈ G , we write φg for the permutation of the

elements of G defined by left multiplication by g .

φg (x) = gx , for x ∈ G .

If h ∈ G and h 6= g , then φh 6= φg .

The mapping g → φg associates to every element of G a

permutation of the n elements of G , and these permutations satisfy

φgh(x) = ghx = g(hx) = φgφh(x), for all g , h, x ∈ G .

Moreover φid is the identity permutation and φg−1 is the inverse of

φg , so the set of all φg , where g ∈ G , is a group of permutations

of n objects that is isomorphic to G .



Lecture 18: Group Homomorphisms

Definition Let G and H be groups, with operations ?G and ?H
respectively. A function φ : G → H is a group homomorphism if

φ(x ?G y) = φ(x) ?H φ(y),

for all elements x , y of G .



Examples of Group Homomorphisms

1. The Determinant The function det : GL(2,R)→ R× is a

group homomorphism, since for any matrices A,B in

GL(2,R),

det(AB) = det(A)× det(B).

Note that the multiplication in the left hand side of the above

equation is multiplication of 2× 2 matrices and the “×” on

the right hand side refers to multiplication of real numbers.

2. The logarithm function Let R×
>0 denote the group of all

positive real numbers under multiplication, and let x , y ∈ R×
>0.

Then log(x), log(y) and log(x + y) are real numbers, and

log(xy) = log(x) + log(y).

The function log is a group homomorphism from R×
>0 to

(R,+), the group of all real numbers under addition.

(Note that the choice of base of log does not matter here).



Lemma: φ(idG ) = idH

Let φ : G → H be a group homomorphism, and let x ∈ G . Then

φ(x ?G idG ) = φ(x) ?H φ(idG ).

Also φ(x ?G idG ) = φ(x).

In H we have

φ(x) ?H φ(idG ) = φ(x)

=⇒ φ(x)−1 ?H φ(x) ?H φ(idG ) = φ(x)−1 ?H φ(x)

=⇒ φ(idG ) = idH .

DefinitionThe kernel of a group homomorphism φ : G → H is the

subset of G consisting of all those elements whose image under φ

is idH .

The image of φ is the subset of H consisting of all φ(x), where

x ∈ G .



Examples again

1. det : GL(2,R)→ R×

The kernel is {A ∈ GL(2,R) : detA = 1}. This is the special

linear group SL(2,R). It is a subgroup of GL(2,R).

The image of det includes all elements of R×.

2. The kernel of log : R×
>0 → (R,+) is

{x ∈ R>0 : log(x) = 0} = {1}.

The kernel consists only of the identity element of R×
>0}. The

image of log is the entire group (R,+).

The kernel and image of a group homomorphism φ : G → H are

subgroups of G and H respectively.



The kernel is a subgroup

Let φ : G → H be a homomorphism of groups. The kernel of φ is

ker φ = {x ∈ G : φ(x) = idH}.

I idG ∈ ker φ - we saw this a couple of slides back

I Suppose x , y ∈ ker φ. Then

φ(x ?G y) = φ(x) ?H φ(y) = idH ?H idH = idH ,

so x ?G y ∈ ker φ and ker φ is closed under ?G .

I Suppose x ∈ ker φ. Then

idH = φ(x−1?Gx) = φ(x−1)?Hφ(x) = φ(x−1)?H idH = φ(x−1).

So x−1 ∈ ker φ.

So ker φ is a subgroup of G .


