
6. Partition: 4+1
Cycle type: one 4-cycle and one fixed point
Representative of class: (1 2 3 4)
No. of elements in class:

�5
4

�
× 3! = 5 × 6 = 30

Order of centralizer of an element of this class: 120
30 = 4

Note on Count: We have
�5

4

�
choices for the four elements to be in our 4-cycle, and having

chosen them there are 3! ways to arrange them in cyclic order. For example if our elements
are 1,2,3,4 we can agree to write 1 first in our description of the cyclic order, we have 3
choices for what to put next, 2 after that and so on.

7. Partition: 5
Cycle type: one 5-cycle
Representative of class: (1 2 3 4 5)
No. of elements in class: 4! = 24
Order of centralizer of an element of this class: 120

24 = 5

So the number of conjugacy classes of S5 is 7. We should find that our numbers of elements in
each add up to 120:

1 + 10 + 15 + 20 + 20 + 30 + 24 = 120.

Note: We have shown that the centre of Sn (for n � 3) is trivial, since the centre consists exactly
of those elements that have only one element in their conjugacy class. Every cycle type except the
one with n fixed points is represented by more than one element.

The symmetric groups are exceptional in that their conjugacy classes have a nice combinatorial
description. This is not really typical of finite groups.

3.2 Examples

The goal of this section is to explain the concept of a group action, along with the related concepts
of orbit and stabilizer, via a selection of examples. A group action occurs when every element of a
group determines a permutation of some set.

1. Let G = D8, the symmetry group of the square, with vertices and axes of symmetry labelled
as follows. The elements of G are transformations of the whole square, but we can consider
them specifically as permutations of the vertices.

With the vertices labelled 1,2,3,4 as in this picture, the elements of D8 respectively corre-
spond to permutations of {1, 2, 3, 4} as follows.

id ↔ id TM ↔ (1 4)(2 3)
R90 ↔ (1 4 3 2) TN ↔ (1 2)(3 4)
R180 ↔ (1 3)(2 4) TL ↔ (2 4)
R270 ↔ (1 2 3 4) TP ↔ (1 3)

Note that every element of D8 determines a different permutation of the set {1, 2, 3, 4} of
vertices of the square - one of these is the identity, two are 4-cycles, three are pairs of disjoint
transpositions and two are single transpositions. Not every permutation of {1, 2, 3, 4} arises
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as a symmetry of the square - for example the permutation (1 2) does not. However the
description above amounts to an identification of D8 with a particular subgroup of order
8 of the symmetric group S4 (you can check that the composition operation on D8 matches
that on the group of associated permutations).

We say that D8 acts on the set {1, 2, 3, 4} of vertices of the square. This means that every
element of D8 determines a permutation of {1, 2, 3, 4}, that the permutation determined by
the identity element of D8 is the identity permutation, and that the permutation determined
by the composition of two elements of D8 is the composition in S4 of the two permutations
that they determine separately.

Choose any vertex of the square, for example 2. For each of the four vertices 1,2,3,4, there
is an element of D8 that takes 2 to that vertex. We say that the orbit of the element 2 under the
action of G is the full set {1, 2, 3, 4} of vertices. For any particular vertex, we can identify the
elements of G that leave this vertex fixed. This set is called the stabilizer of the element and
it is always a subgroup of G. In our example the stabilizer of both 1 and 3 is the set {id, TL}
and the stabilizer of both 2 and 4 is {id, TP}.

2. Let G be the group of symmetries of the diamond shown below. Then G has four elements
- the identity, the rotation through 180◦ and the reflections in the axes L and M.

L

M

1

2

3

4

Here again, the elements of G correspond to permutations of the set of vertices as follows.

id ↔ id TM ↔ (1 3)
R180 ↔ (1 3)(2 4) TL ↔ (2 4)

In this case every element of the group takes the vertex 1 either to 1 or 3, so the orbit of 1 is
just {1, 3}. Every element of the group takes the vertex 2 either to 2 or 4, so the orbit of 2 is
the set {2, 4}. This is an example of a group action with two orbits.
The stabilizers of the various elements are given by

Stab(1) = {id, TL}, Stab(2) = {id, TM}, Stab(3) = {id, TL}, Stab(4) = {id, TM}.

In both of these examples it can be observed for each vertex that the product of the number
of elements in its stablizer and the number of elements in its orbit is the group order (this is
the Orbit-Stabilizer theorem).

3. Let G = {1,−1, i,−i}, a group under multiplication. Mutiplying by any element of G de-
termines an invertible function from C to C. Multiplication by 1 is the identity function on
C. Multiplication by i rotates a point through 90◦ counterclockwise about zero; multipli-
cation by −1 and −i similary act as rotations of the complex plane, through 180◦ and 270◦

respectively.

For a nonzero complex number z, the orbit of z under this action consists of the four vertices
of the square that is centered at zero and has z as one vertex. The stabilizer of every such z
is the trivial subgroup of G. The orbit of the complex number 0 consists only of 0, and its
stabilizer is all of G.
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4. Consider the group GL(3,R) of invertible 3 × 3 matrices over R. Since every matrix in
GL(3,R) determines a linear transformation of R3, we can think of G as the group of all
invertible linear tranformations of R3. We say that G acts on the set R3. For a column vector
v in R3 and an invertible matrix A ∈ GL(3,R), the element A takes v to Av (also an element
of R3).

If v is a non-zero vector in R3 and if u is another one, then there is some invertible matrix
A for which Av = u, so u and v belong to the same orbit under the action of GL(3,R). The
stabilizer of v is the set of invertible matrices A for which Av = v, which is a subgroup of
GL(3,R).
The zero vector is its own image under left multiplication by any matrix, so it forms an orbit
by itself, and its stablizer is all of GL(3,R). This is an example of an action of an infinite
group on an infinite set, with two orbits.

5. Let G be a finite group with elements {g1,g2, . . . ,gn}. Let x ∈ G (so x is one of the gi). The
function that takes gi to xgi is a permutation of the elements of G determined by the element
x. So every element of G determines a permutation of the set G by left multiplication. This
is an action of G on the set of its own elements. There is a single orbit and the stabilizer of
each element is trivial.

6. Again let G be a finite group with elements {g1,g2, . . . ,gn}. Let x ∈ G (so x is one of the gi).
Another permutation of G that is defined by the element x is the one given by

gi → xgix
−1.

Under this action, the orbit of any element is exactly its conjugacy class, and the stabilizer of
an element is exactly its centralizer in G.
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