
2.2 The centre, centralizers and conjugacy

Definition 2.2.1. Let G be a group with operation �. The centre of G, denoted by Z(G) is the subset of G
consisting of all those elements that commute with every element of G, i.e.

Z(G) = {x ∈ G : x � g = g � x for all g ∈ G}.

Note that the centre of G is equal to G if and only if G is abelian.

Example 2.2.2. What is the centre of GL(n,Q), the group of n × n invertible matrices with rational
entries (under matrix multiplication)?

Solution (Summary): Suppose that A belongs to the centre of GL(n,Q) (so A is a n×n invertible
matrix). For i, j in the range 1, . . . ,n with i �= j, let Eij denote the matrix that has 1 in the (i, j)
position and zeros in all other positions. Then In + Eij ∈ GL(n,Q) and

A(In + Eij) = (In + Eij)A =⇒ A+AEij = A+ EijA =⇒ AEij = EijA.

Now AEij has Column i of A as its jth column and is otherwise full of zeros, while EijA has Row
j of A as its ith row and is otherwise full of zeros. In order for these two matrices to be equal for
all i and j, it must be that the off-diagonal entries of A are all zero and that the entries on the main
diagonal are all equal to each other. Thus A = aIn, for some a ∈ Q, a �= 0. On the other hand it is
easily checked that any matrix of the form aIn where a ∈ Q does commute with all other matrices.
Hence the centre of GL(n,Q) consists precisely of those matrices aIn where a ∈ Q, a �= 0.

Note: Matrices of this form are called scalar matrices, they are scalar multiples of the identity
matrix.

Exercise: Write out an expanded version of the above proof yourself, making sure that you follow
all the details. Proofs like this that involve matrix indices and the mechanism of matrix multipli-
cation tend to be fairly concise to write down but also fairly intricate for the reader to unravel.

A key fact about the centre of a group is that it is not merely a subset but a subgroup. This is
our first example of a subgroup that is defined by the behaviour of its elements under the group
operation.

Theorem 2.2.3. Let G be a group. Then Z(G) is a subgroup of G.

Proof. We have the usual three things to show, and we must use the definition of the centre to
show them.

• Z(G) is closed under the operation of G.
Suppose a,b ∈ Z(G). We must show that ab ∈ Z(G). That means showing that for any
element x of G, x commutes with ab. Now

abx = axb (bx = xb since b ∈ Z(G))

= xab (ax = xa since a ∈ Z(G)).

So abx = xab for all x ∈ G, and ab ∈ Z(G).

• idG ∈ Z(G)
By definition idGx = xidG = x for all x ∈ G, so idG commutes with every element of G and
belongs to the centre of G.

• Suppose a ∈ Z(G). We need to show that a−1 ∈ Z(G).
Let x inG. Then

ax = xa =⇒ axa−1 = xaa−1 = x =⇒ a−1axa−1 = a−1x =⇒ xa−1 = a−1x.

Thus a−1 commutes with x for all x ∈ G and a−1 ∈ Z(G).

We conclude that Z(G) is a subgroup of G.
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Exercise: Show that Z(D6) is the trivial subgroup.

Another important concept in group theory is introduced in the next definition.

Definition 2.2.4. Let G be a group and let g ∈ G. A conjugate of g in G is an element of the form xgx−1

for some x ∈ G. The set of all conjugates of g in G is called the conjugacy class of the element g.

It may not be immediately obvious why this notion of conjugacy is an important one. Basically
elements that are conjugates of each other have many properties in common (we will see in the
next chapter what this means in the special case of groups of permutations). To get a sense of
what the definition means we will start with a few observations.

1. Think of the element g as being fixed and imagine that we are looking at the various con-
jugates of g. These are the elements xgx−1 where x ∈ G. The element xgx−1 is equal to g if
and only if gx = xg, i.e. if and only if x commutes with g.

2. This means that if every element of G commutes with g (i.e. if g ∈ Z(G)), then all the
conjugates of g are equal to g, and the conjugacy class of g consists only of the single element
g.

3. In particular this means that if G is abelian, then every conjugacy class in G consists of a
single element (this is not really an interesting case for the concept of conjugacy).

4. So (roughly) the number of distinct conjugates of an element G measures how far away it
is from being in the centre. If an element has few conjugates then it commutes with many
elements of the group. If an element has many conjugates, it commutes with few elements.
We will make this precise later.

5. Every element g of G is conjugate to itself, since for example g = ggg−1.

Example 2.2.5. Let the elements of D8, the group of symmetries of the square, be denoted by id,R90,R180,R270
(the rotations), TL, TM (the reflections in the perpendicular bisectors of the sides), and TN, TP (the reflections
in the two diagonals). Then D8 has five distinct conjugacy classes as follows:

{id}, {R180}, {R90,R270}, {TL, TM}, {TN, TP}.

This is saying that:

• {id} and R180 are in the centre.

• R90 and R270 are conjugate to each other. To confirm this, look at (for example) the element
TL◦R90◦T−1

L and confirm that it is equal to R270. You can replace TL with any of the reflections
here, they will all work.

• The reflections TL and TM are conjugate to each other. To confirm this you could look at
TN ◦ TM ◦ T−1

N .

• The reflections TN and TP in the diagonals are conjugate to each other. To confirm this you
could look at TM ◦ TN ◦ T−1

M .

Note that in this case the whole group is the union of the distinct conjugacy classes, and that
different conjugacy classes do not intersect each other. This is a general and important feature of
groups. We will not prove it formally although you are encouraged (as an exercise) to adapt the
following description to a formal proof. If two elements of G are conjugate to each other, then
any element that is conjugate to either of them is conjugate to both. Thus the conjugacy class of
an element g is the same as the conjugacy class of hgh−1 for any h ∈ G. On the other hand, if
two elements are not conjugate to each other, then no element can be simultaneously conjugate to
both of them, and their conjugacy classes do not intersect.

In the case of D8 above, we can notice that the numbers of elements in the conjugacy classes
(1,1,2,2 and 2) are all factors of the group order which is 8. We will finish Chapter 2 now by
showing that this is not an accident.
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Definition 2.2.6. Let g be an element of a group G. Then the centralizer of g in G, denoted CG(g), is
defined to be the set of all elements of G that commute with g, i.e.

CG(g) = {x ∈ G : xg = gx}.

Please give some care and attention to this definition, and in particular make sure that you
understand the distinction between the centralizer of an element of a group and the centre of a
group. The centre of a group consists of all those elements that commute with everything in the
group; it is a feature of the group itself. However, centralizers are only defined for particular
elements. The centralizer of a particular element g consists of all those elements that commute
with g; they don’t have to commute with anything else. The centre of the group is the intersection
of the centralizers of all elements.

Example 2.2.7. Let G = D8, with elements labelled as in Example 2.2.5. We can write down the central-
izers of all elements of G. Note that Z(G) = {id,R180}.

• CG(id) = G - all elements commute with the identity, so its centralizer is the whole group.

• CG(R180) = G - all elements commute with R180, so its centralizer is the whole group; this
element is in the centre of D8.

• CG(R90) = {id,R90,R180,R270} - R90 commutes with all of the rotations but with none of the
reflections.

• CG(R270) = {id,R90,R180,R270} - R270 commutes with all of the rotations but with none of the
reflections.

• CG(TL) = {id,R180, TL, TM} - TL commutes with itself and with the reflection TM in the axis
that is perpendicular to L, and with the elements of the centre.

• CG(TM) = {id,R180, TL, TM} - TM commutes with itself and with the reflection TL in the axis
that is perpendicular to M, and with the elements of the centre.

• CG(TN) = {id,R180, TN, TP} - TN commutes with itself and with the reflection TP in the axis
that is perpendicular to N, and with the elements of the centre.

• CG(TP) = {id,R180, TN, TP} - TP commutes with itself and with the reflection TN in the axis
that is perpendicular to P, and with the elements of the centre.

Theorem 2.2.8. For every g ∈ G, CG(g) is a subgroup of G.

The proof of Theorem 2.2.8 is a problem on Problem Sheet 2.

Two observations about centralizers:

1. The centralizer of g in G is equal to G if and only if g ∈ Z(G).

2. For an element g of G that is not in the centre, CG(g) will be a subgroup that contains both
Z(G) and g (and so properly contains Z(G)) but is not equal to G.

The following theorem relates the centralizer of an element g of G to the conjugacy class of g.
It is a special case of the famous Orbit-Stabilizer Theorem concerning group actions.

Theorem 2.2.9. Let g be an element of a finite group G. Then the number of distinct conjugates of g is
[G : CG(x)], the index in G of CG(g).

Note: Using Examples 2.2.5 and 2.2.7 above, we can verify this theorem for the dihedral group
D8.

It is convenient to mention the following necessary Lemma first, rather than trying to prove it
in the middle of the proof of Theorem 2.2.9.

Lemma 2.2.10. Suppose that H is a subgroup of a finite group G. Let x,y be elements of G. Then the
cosets xH and yH are equal if and only if the element y−1x belongs to H.
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Proof. From Lemma 2.1.5 we know that xH and yH are equal if and only if x ∈ yH (since in this
case x belongs to both xH and yH and the cosets are equal since they intersect). This occurs if and
only if x = yh for some h ∈ H, i.e., if and only if the element y−1x belongs to H.

Proof. (of Theorem 2.2.9) Recall that [G : CG(x)] is the number of left cosets of CG(g) in G. We
will show that two elements of G determine distinct conjugates of g if and only if they belong to
distinct left cosets of CG(g). To see this let x1 and x2 be elements of G. Then

x1gx
−1
1 = x2gx

−1
2

⇐⇒ gx−1
1 = x−1

1 x2gx
−1
2

⇐⇒ gx−1
1 x2 = x−1

1 x2g

⇐⇒ x−1
1 x2 ∈ CG(g)

By Lemma 2.2.10, this occurs if and only if the cosets x1CG(g) and x2CG(g) are equal. Thus
elements of G determine distinct conjugates of g if and only if they belong to distinct left cosets of
CG(g), and the number of distinct conjugates of g is the number of distinct left cosets of CG(g) in
G, which is [G : CG(g)].

In particular, since |G| = |CG(g)| [G : CG(g)], the number of elements in each conjugacy class
of G is a factor of G. This fact can be used to prove the following important theorem about finite
p-groups. A finite p-group is a group whose order is a power of a prime p (e.g. a group of order
27, 64, or 125).

Theorem 2.2.11. Suppose that G is a finite p-group. Then the centre of G cannot be trivial, i.e. it cannot
consist only of the identity element.

Proof. As an example, suppose that p = 5 and that |G| = 54 = 625. (As an exercise you could
adapt the proof for this example to a general proof). Suppose that the conjugacy classes of G are
C1, C2, . . . ,Ck. Remember that every element of the centre comprises a conjugacy class all on its
own, and that each non-central element belongs to a conjugacy classes whose number of elements
is greater than 1 and is a divisor of 54. Suppose that C1 is the conjugacy class that consists only of
the identity element. Then

|G| = 54 = 1 + |C2|+ |C3|+ · · ·+ |Ck|.

(This is called the class equation of G). Each |Ci| is either 1 or a multiple of 5. If all of |C2|, |C3|, . . . , |Ck|

are multiples of 5, it means that |G| = 1 + (a multiple of 5), so |G| would have remainder 1 on di-
vision by 5. This is not possible since |G| = 54, so it must be that some (at least 4) of the Ci

(apart from C1) consist of a single element. These “single element” conjugacy classes correspond
to non-identity elements of the centre of G.
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