
1.3 Subgroups and generating sets

A common approach to understanding algebraic structures is to try to find smaller structures
within them that have similar properties. In the case of groups such things are called subgroups.

Example 1.3.1. The special linear groups
Recall that GL(3,Q), the set of 3×3 matrices that have rational entries and have non-zero determinant, is a
group under matrix multiplication. Within this let SL(3,Q) denote the set of elements whose determinant
is 1. Then

1. SL(3,Q) is closed under matrix multiplication.
What is required to show this is that whenever A and B belong to SL(3,Q), then so does their product
AB. To confirm that this is true we need to look at the defining properties of elements of SL(3,Q) and
at how they behave under matrix multiplication.

So let A,B ∈ SL(3,Q).
This means that A and B are 3 × 3 rational matrices and det(A) = det(B) = 1.
Then det(AB) = det(A)det(B) = 1 × 1 = 1.
So AB ∈ SL(3,Q) also.
(Note that this relies on the multiplicative property of the determinant.)

2. The identity matrix belongs to SL(3,Q) (since its determinant is 1).

3. Suppose that A belongs to SL(3,Q). Then so also does A−1, since

detA−1 =
1

detA
=

1
1
= 1.

It follows that SL(3,Q) is itself a group under matrix multiplication. We say that it is a subgroup of
GL(3,Q).

Terminology: SL(3,Q) is called the special linear group of 3 × 3 matrices over Q with determinant 1.
The general linear group includes all invertible matrices; the special linear group only includes
those with determinant 1.

Definition 1.3.2. Let G be a group and let H be a subset of G. Then H is called a subgroup of G if H is
itself a group under the operation of G.

Every group has a trivial subgroup consisting only of the identity element, and every group is a
subgroup of itself. A proper subgroup is one that is not equal to the whole group.
Not every group has non-trivial proper subgroups. For example, let χ = e2πi/5. Then χ5 = 1 ∈ C,
so χ is a complex 5th root of unity. The full set of complex fifth roots of unity is

{1, e2πi/5, e4πi/5, e6πi/5, e8πi/5} = {1,χ,χ2,χ3,χ4}.

These five numbers form a group G5 under multiplication of complex numbers (note that they
occur at the vertices of a regular pentagon in the Argand plane). The full group table is below.

G5,× 1 χ χ2 χ3 χ4

1 1 χ χ2 χ3 χ4

χ χ χ2 χ3 χ4 1
χ2 χ2 χ3 χ4 1 χ

χ3 χ3 χ4 1 χ χ2

χ4 χ4 1 χ χ2 χ3

Claim: G5 has no non-trivial proper subgroup.
To see this, take the element χ. Suppose that H is a subgroup of G5 that contains χ. What else
must H contain? Can you show that H must include all of the elements of G5? Repeat this for
each of the other non-identity elements of G5.

So it is not automatic that a group will have non-trivial proper subgroups. Nevertheless they
often do, as in the following examples/exercises.
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1. Let D2n be the dihedral group consisting of the symmetries of a regular polygon with n sides.
So D2n consists of n rotational symmetries and n reflections. The set of rotational symme-
tries is a subgroup with n elements. To verify this means verifying that

• The composition of two rotations is a rotation.

• The inverse of a rotation is a rotation.

Is the set of reflections in D2n a subgroup? Why or why not?

2. Let S5 be the group of permutations of the set {a,b, c,d, e}.
How many elements are in S5?
Let H1 be the subset of S5 consisting of those elements that fix a (and permute b, c,d, e).
Show that H1 is a subgroup of S5. How many elements are in H1?
Let H2 be the subset of S5 consisting of those elements that fix the set {a,b} (this includes
those elements that fix both a and b and those that swap a and b). Show that H2 is a
subgroup of S5. How many elements are in H2?
Let H3 denote the intersection of H1 and H2. How many elements does it have? Is it a
subgroup of S5?

3. Let C× denote the group of non-zero complex numbers, under multiplication. The follow-
ing are some examples of subgroups of C×.

• The set R× of non-zero real numbers.

• The set S = {a + bi ∈ C : a2 + b2 = 1}; S is the set of complex numbers of modulus 1,
geometrically it is the unit circle in the complex plane. To see why S is a subgroup of
C×, you need to confirm that S is closed under multiplication and that it contains the
inverse of each of its elements.

Is the set of pure imaginary numbers a subgroup of C×? Recall that a complex number is
pure imaginary if its real part is zero and its imaginary part is not (e.g. 2i, 3i etc.).

Let G be a group. It is usual to denote the result of combining elements a and b of G by ab
(like a product). In the same way we can denote the element of combining a with a by a2 (same
as aa), hence we have a3 (= aaa),a4 (= aaaa), etc. We can think of these elements as “positive
integer powers” of a.
We also adopt the convention that for every element a of G, a0 is understood to be the identity
element.
Also, a−1 is the inverse of a, and we may understand a−2 as a−1a−1, and so on: a−1,a−2,a−3, . . .
are the positive integer powers of a−1.
Thus for any element a of G we have the full set of “integer powers” of a within G; moreover,
they behave as we would like integer powers to behave in the sense that

aras = ar+s for all r, s ∈ Z.

Note: We are not assuming that all of the integer powers of a are necessarily distinct.
Notation: The set of integer powers of an element a of G is often denoted by �a�:

�a� = {. . . ,a−3,a−2,a−1, id,a,a2,a3, . . . } = {an : n ∈ Z}.

Lemma 1.3.3. For a group G and any element a of G, �a� is a subgroup of G.

Proof. We need to show that

1. �a� is closed under the group operation.
This is clear, the elements of �a� are exactly those that have the form ar for some integer r,
and aras = ar+s.

2. id ∈ �a�.
This is true by definition, since id = a0.
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3. �a� contains the inverse of each of its elements.
To see this, note that for an integer r the inverse of ar is a−r.

Definition 1.3.4. �a� is called the cyclic subgroup of G generated by �a�.
In general, a subgroup of G is said to be cyclic if it is equal to �a� for some a ∈ G.

The proof of Lemma 1.3.3 above is very typical of proofs in group theory. The context is a
completely abstract group about which we know nothing at all. The Lemma says that given any
group, we can choose any element and the set of all powers of that element (and its inverse) in
the group will give us a subgroup. We can now apply this lemma to examples, as in the following
cases.

1. In (Z,+), the operation is addition, and the cyclic subgroup generated by 2 consists of all
those elements that can be obtained by adding 2 (or its inverse −2) to itself repeatedly. This
subgroup includes 2, 2+ 2 = 4, 2+ 2+ 2 = 6, etc. It also includes the identity element 0, the
inverse −2 of 2, and the elements (−2) + (−2) = −4, (−2) + (−2) + (−2) = −6, etc.
The cyclic subgroup of Z generated by 2 consists of all the even integers.
Question: What is the cyclic subgroup of Z generated by 1? By 3?

2. In D2n, let R denote the rotation through 2π
n

about the centroid of the regular polygon. Then
the cyclic subgroup generated by R is the group of rotational symmetries of the object. It
has n elements.
If S is one of the reflections in D2n then S is its own inverse and the cyclic subgroup of D2n
generated by S consists only of S itself and of the identity element.

3. Questions:
What are the elements of the cyclic subgroup of C× generated by −1?
What are the elements of the cyclic subgroup of C× generated by i?
Under what conditions on the complex number z is the subgroup �z� of C× a finite group?

Suppose that a is an element of a group G. Then any subgroup of G that contains a must also
contain a2,a3, . . . , and must also contain a−1 and hence a−2,a−3, . . . as well as the identity ele-
ment. Hence any subgroup of G that contains the element a must contain �a�, the cyclic subgroup
generated by a. Sometimes it is helpful to think of �a� as the set of elements that must be in any
subgroup that contains a.

Having discussed the concept of the cyclic subgroup of a group that is generated by a partic-
ular element, we now move on to the related idea of what it means for a group to be cyclic.

Definition 1.3.5. A group G is said to be cyclic if G = �a� for some a ∈ G.

Alternative version(s) of definition: A group G is cyclic if it contains an element a with the
property that every element of G is a “power” of a. A cyclic group is one that is generated by a
single element, in the sense that we can start with a single element and produce all the elements
of G by (repeatedly) taking powers of that element and its inverse and by multiplying the results
of such operations together.

In order to show that a group is cyclic, it is generally necessary to produce an example of a
generator for it. It is generally not the case that any element (or any non-identity element) will do
this job.
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Examples

1. (Z,+) is an infinite cyclic group, with 1 as a generator.
(This is saying that every integer is either equal to 0 (the identity in this group) or can be
obtained by repeatedly adding 1 or −1 to itself).
Question: There is one other element that is a generator for (Z,+) as a cyclic group. What is
it?

2. For a natural number n, the group of nth roots of unity in C× is a cyclic group of order n,
with (for example) e

2πi
n as a generator. The elements of this group are the complex numbers

of the form ek
2πi
n , where k ∈ Z.

Question to think about: What other elements generate this group? The answer to this ques-
tion is slightly tricky and depends on n.

3. For n � 3, the group of rotational symmetries of a regular n-gon (i.e. a regular polygon
with n sides) is a cyclic group of order n, generated (for example) by the rotation through
2π
n

in a counterclockwise direction.

The term order appears in the examples above. Here’s its definition.

Definition 1.3.6. The order of a finite group is the number of elements in it. A group with infinitely
many elements is said to have infinite order.

It is common practice to denote a cyclic group of order n by Cn, and an infinite cyclic group by
C∞. We might write Cn as �x� and think of Cn as being generated by an element x. The elements
of Cn would then be

id, x, x2, . . . , xn−1.

Here it is understood that xn = id, and that multiplication is defined by

xi · xj = x[i+j]n ,

where [i+ j]n denotes the remainder on dividing i+ j by n. In this context the multiplication table
for C4 = �x� is given below.

C4 id x x2 x3

id id x x2 x3

x x x2 x3 id
x2 x2 x3 id x
x3 x3 id x x2

Note: The philosophy here is that all cyclic groups of order n (or 4) really look the same, so we
might as well have one notation Cn for them. Once we give a name to a generator, like x, we can
write out the multiplication table as for C4 above. In this context, we don’t care what sort of object
x is, whether it is a number, a matrix, a function, a permutation or whatever. The group of nth
roots of unity in C and the group of rotational symmetries of the regular n-gon might be regarded
as particular manifestations of Cn in algebra and geometry. Later we will have the language to
make all of this precise.

We might ask how many elements of Cn are actually generators of it as a cyclic group and
how this number depends on n. The answer is not immediately obvious. Of course (provided
n > 1) the identity element is never a generator of Cn and so the answer is at most n − 1. In the
case of C4, we can use the table above to look at the set of powers of each element and see if they
include the whole group. We find

• Powers of x: x, x2, x3, id - the whole group.

• Powers of x2: x2 and id only - not the whole group.

• Powers of x3: x3, x2, x, id - the whole group.

So two of the four elements of C4 generate it as a cyclic group. What about C5? What about C6?
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Theorem 1.3.7. Suppose that x is a generator of Cn. Then the elements of Cn that generate it as a cyclic
group are exactly those elements of the form xi where gcd(i,n) = 1. The number of these is φ(n).

We won’t prove Theorem 1.3.7 in these notes, but in order to investigate it, have a look at some
examples, like the group of 6th, 7th or 8th roots of unity in C×. See if you can convince yourself
that this theorem is true and why.
Recall: For a natural number n, φ(n) is the number of integers in the range 1, . . . ,n that are
relatively prime to n.

We finish this section by remarking that the cyclic subgroup generated by a particular element
is a special case of a more general phenomenon. Suppose that G is a group and that S is a subset
(not necessarily a subgroup) of G. Then we can define the subgroup of G generated by S. This is
denoted by �S� and it consists of all the elements of G that can be obtained by starting with the
identity and the elements of S and their inverses, and multiplying these elements together in all
possible ways. So �S� is the smallest subgroup of G that contains S.

Definition 1.3.8. If �S� is all of G, we say that S is a generating set of G.

Problems As usual let D8 denote the group of symmetries of the square (below).

................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................
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Let TL, TM, TN, TP denote the reflections in the indicated lines, and let Rt denote the anticlockwise
rotation through t◦.

1. Show that the subgroup of D8 generated by R180 and TL is not all of D8. (For example it does
not contain R90).

2. Show that D8 can be generated by R90 and by any one of the reflections.

3. Show that {TL, TM} is a generating set for D8.

4. More generally, show that the group D2n of symmetries of the regular n-gon can be gener-
ated by the counterclockwise rotation through 2π

n
and any one reflection.

This last one might be tricky - remember that by having the rotation through 2π
n

in your
generating set, you get all the rotations for free. What needs to be shown is that you can get
all the reflections by composing the one reflection that is in your symmetry group with ro-
tations. If in doubt, start with the equilateral triangle, the square and the regular pentagon.

13


