
Chapter 1

What is a group?

1.1 Examples

This section contains a list of algebraic structures with different properties. Although these objects
look different from each other, they do have some features in common, for example they are all
equipped with algebraic operations (like addition, multiplication etc.). The properties of these
operations can be studied and compared. An important theme of group theory (and all areas of
abstract algebra) is the distinction between essential and superficial similarities and differences in
algebraic structures.

1. (Z,+)
Z is the set of integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
The “+” indicates that we are thinking of Z as being equipped with addition. This means
that given any pair of integers a and b we can produce a new integer by taking their sum
a+ b.

2. (C×,×)
Here C× denotes the set of non-zero complex numbers, and “×” denotes multiplication of
complex numbers. So for example

(2 + 3i)× (1 − i) = 5 + i.

The product of two elements of C× is always an element of C× (we say that C× is closed
under multiplication of complex numbers). So “×” is a binary operation on C×.

3. (GL(2,Q),×)
Read this as “the general linear group of 2 by 2 matrices over the rational numbers” (“GL”
stands for “general linear”).

GL(2,Q) =

��
a b
c d

�
: a,b, c,d ∈ Q;ad− bc �= 0

�
,

so we are talking about the set of 2 by 2 matrices that have rational entries and have non-zero
determinant or equivalently that have inverses. The “×” here stands for matrix multiplica-
tion. Note that if A and B are elements of GL(2,Q), then so also are their matrix products
AB and BA (which might be not be the same).
Question: Is this obvious? Why is it true?

4. ({1, i,−i,−1},×)
Here we are talking about the set of complex fourth roots of unity, under multiplication
of complex numbers. Note that this set is closed under multiplication, meaning that the
product of any two elements of the set is again in the set. You can check this directly by
writing out the whole multiplication table (a worthwhile exercise at this point).
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5. Let S4 denote the set of all permutations of the set {a,b, c,d}.
Recall that a permutation of the set {a,b, c,d} is a bijective function from the set to itself. The
permutation

a −→ d

b −→ b

c −→ a

d −→ c

is sometimes written as
�

a b c d
d b a c

�
.

Given two permutations σ and τ of {a,b, c,d}, we can compose them to form the functions
σ◦τ (σ after τ) and τ◦σ (τ after σ). This composition works as for any functions and is often
referred to as multiplication of permutations.

Claim: The functions σ ◦ τ and τ ◦ σ are again permutations of {a,b, c,d}.
Why is this true? Can you prove it as an exercise?

Question: Would you expect σ ◦ τ and τ ◦ σ to be the same function? If in doubt, try some
examples.

Remark: To study group theory and abstract algebra, you may need to relax and expand
your understanding of the meaning of the word multiplication. Multiplication of integers
means something very specific: 5 × 7 is the number that you get from the addition 5 +
5 + 5 + 5 + 5 + 5 + 5 or 7 + 7 + 7 + 7 + 7 (why are these the same?). Mutiplication of
real numbers (or complex numbers) are natural extensions of that. In advanced algebra the
word “multplication” is often used for operations that don’t resemble these familiar ones
at all (this already happens in the case of matrix multiplication). It is a good idea to get
used to thinking of the work multiplication as just meaning “a way of combining pairs of
elements”.

6. General groups of symmetries
Suppose that P is some connected object in the two-dimensional plane, like a polygon or
a line segment or a curve or a disc (connected means all in one piece). The following is an
informal (and temporary) description of what is meant by a symmetry of P. Imagine that P
is an object made of a rigid material. If you can pick up this piece of material from the plane
and move it around (in 3-dimensional space) without breaking, compressing, stretching or
deforming it in any way, and put it back so that the object occupies the same space that it
originally did, you have implemented a symmetry of P.

For example, if P is a circular disc, then symmetries of P include rotations about the centre
through any angle, reflections in any diameter, and any composition of operations of these
kinds. Two symmetries are considered to be the same if P ends up in exactly the same
position after both of them - for example in the case of the circular disc, a counter-clockwise
rotation about the centre through a full 360◦ is the same as the rotation through 0◦ or the
rotation through 720◦.

7. Symmetries of an equilateral triangle
Consider an equilateral triangle with vertices labelled A,B,C as in the diagram. For this
example it does not matter whether you think of the triangle as consisting just of the vertices
and edges or as a solid triangular disc.
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The triangle has six symmetries:

• the identity symmetry I, which leaves everything where it is

• the counterclockwise rotation R120 through 120◦ about the centroid

• the counterclockwise rotation R240 through 240◦ about the centroid

• the reflections in the three medians: call these TL, TM, TN.

Let D6 denote the set of these six symmetries.
Note that the first three (the rotations) preserve the order in which the vertices A,B,C are
encountered as you travel around the perimeter in a counter-clockwise direction; the last
three (the reflections) change this order. If you think of the object as a “filled-in” disc, the
reflections involve flipping it over and the rotations don’t. (Note that the identity permuta-
tion is considered to be a rotation, through 0◦ - or any integer multiple of 360◦. It is certainly
not a reflection).

Now that we have these six symmetries, we can compose pairs of them together.

Example: We define R120 ◦ TL (read the “◦” as “after”) to be the symmetry that first reflects
the triangle in the vertical line L and then applies the counter-clockwise rotation through
120◦. The overall effect of this leaves vertex B fixed and interchanges the other two, so it is
the same as TM - convince yourself of this, using a physical triangle if necessary. For every
pair of our six symmetries, we can figure out what their composition is and write out the
whole composition table, which is partly completed below. The entry in this table in the
position whose row is labelled with the symmetry τ and whose column is labelled with the
symmetry σ is τ ◦ σ.

(D6, ◦) I R120 R240 TL TM TN
I I R120 R240 TL TM TN

R120 R120 R240 I TM TN TL
R240
TL TL TN TM I R240 R120
TM
TN

Important Exercise: By thinking about the compositions of all these symmetries, verify the part of the
above table that is filled in and fill in the rest of it. You should find that each element of D6 appears
exactly once in each row and in each column.

One way to think about symmetries of the triangle is as geometric operations as above.
Another is as permutations of the vertices. For example the reflection in the line L fixes the
vertex A and swaps the other two, it corresponds to the permutation

�
A B C
A C B

�
.
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The rotation R120 moves vertex A to the position of C, B to the position of A, and C to the
position of B. It corresponds to the permutation

�
A B C
C A B

�
.

Another Important Exercise: Write down the permutations corresponding to the remaining elements
of D6 and verify that with this interpretation the composition of symmetries as defined above and the
multiplication of permutations really amount to the same thing in this context (this means confirm-
ing that the permutation corresponding to the composition of two symmetries of the triangle is what
you would expect based on the product of the two corresponding permutations).

Does every permutation of the vertices of the triangle arise from a symmetry? If so, what
the second important exercise is really saying is that the set of symmetries of an equilateral
triangle (with composition) is essentially the same object as the set of permutations of the
set {A,B,C}, with permutation multiplication.

Part of our work in this course will be to precisely formulate what is meant by “essentially
the same” here and to develop the conceptual tools and language to discuss situations like
this. The examples in this section will hopefully be useful as our account of the subject
becomes more technical and abstract.

8. Symmetries of a square
Consider a square with vertices labelled A,B,C,D (in cyclic order as you travel around the
perimeter). Let D8 denote the set of symmetries of the square.

Exercise: How many elements does D8 have? Describe them in terms of rotations and reflections.
Write down the permutation of {A,B,C,D} corresponding to each one. Does every permutation of
this set arise from a symmetry of the square?
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