Chapter 4

Orthogonality, Inner Products and Projections

4.1 Inner Product Spaces

4.1.1 The ordinary scalar product on \mathbb{R}^2

In R², the scalar (or dot) product of the vectors $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ is given by

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2 = \mathbf{x}^\mathsf{T} \mathbf{y} = \mathbf{y}^\mathsf{T} \mathbf{x} = \mathbf{y} \cdot \mathbf{x}.$$

We can interpret the *length* $||\mathbf{x}||$ of the vector x as the length of the directed line segment from the origin to (x_1, x_2) , which by the Theorem of Pythagoras is $\sqrt{x_1^2 + x_2^2}$ or $\sqrt{x \cdot x}$. Once we have a concept of *length* of a vector, we can define the *distance* d(x, y) between two vectors x and y as the length of ther difference: d(x, y) = ||x - y||.

Similarly, from the Cosine Rule we can observe that $x \cdot y = ||x|| ||y|| \cos \theta$, where θ is the angle between the directed line segments representing x and y. In particular, x is orthogonal to y (or $x \perp y$) if and only if $x \cdot y = 0$.

So the scalar product encodes much of the geometry of \mathbb{R}^2 , and it also provides a mechanism for defining concepts of length, distance and orthogonality on real vector spaces that do not necessarily have an obvious geometric structure.

4.1.2 Real Inner Products

Let V be a vector space over \mathbb{R} . An *inner product* on V is a function from V × V to \mathbb{R} that assigns an element of \mathbb{R} to every order pair of elements of V, and has the following properties. We write $\langle x, y \rangle$ for the inner product of x and y, and write the function as $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$.

- 1. Symmetry: $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$
- 2. Linearity in both slots (bilinearity): For all x, y, $z \in V$ and all $a, b \in \mathbb{R}$, we have $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ and $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$.
- 3. Non-negativity: $\langle x, x \rangle \ge 0$ for all $x \in V$, and $\langle x, x \rangle = 0$ only if $x = 0_V$.

EXAMPLES We can check that each of the following satisfies the requirements to be an inner product.

- 1. The ordinary scalar product on \mathbb{R}^n .
- 2. Let C be the vector space of all continuous real-valued functions on the interval [0, 1]. The analogue of the ordinary scalar product on C is the inner product given by

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx$$
, for $f,g \in C$.

On the space $M_{m \times n}(\mathbb{R})$, the *Frobenius inner product* or *trace inner product* is defined by $\langle A, B \rangle = \text{trace}(A^TB)$. Note that trace ATB is the sum over all positions (i, j) of the products $A_{ij}B_{ij}$. So this is closely related to the ordinary scalar product, if the matrices A and B were regarded as vectors with mn entries over \mathbb{R} .

It is possible for a single vector space to have many different inner products defined on it, and if there is any risk of ambiguity we need to specify which one we are considering.