
Chapter 4

Orthogonality, Inner Products and
Projections

4.1 Inner Product Spaces

4.1.1 The ordinary scalar product on R2

In R2, the scalar (or dot) product of the vectors x =
�
x1
x2

�
and y =

�
y1
y2

�
is given by

x · y = x1y1 + x2y2 = xTy = yTx = y · x.

We can interpret the length ||x|| of the vector x as the length of the directed line segment from the

origin to (x1, x2), which by the Theorem of Pythagoras is
�

x2
1 + x2

2 or
√
x · x. Once we have a

concept of length of a vector, we can define the distance d(x,y) between two vectors x and y as the
length of ther difference: d(x,y) = ||x− y||.

Similarly, from the Cosine Rule we can observe that x · y = ||x|| ||y|| cos θ, where θ is the angle
between the directed line segments representing x and y. In particular, x is orthogonal to y (or
x ⊥ y) if and only if x · y = 0.

So the scalar product encodes much of the geometry of R2, and it also provides a mechanism
for defining concepts of length, distance and orthogonality on real vector spaces that do not nec-
essarily have an obvious geometric structure.

4.1.2 Real Inner Products

Let V be a vector space over R. An inner product on V is a function from V × V to R that assigns
an element of R to every order pair of elements of V , and has the following properties. We write
�x,y� for the inner product of x and y, and write the function as �·, ·� : V × V → R.

1. Symmetry: �x,y� = �y, x� for all x,y ∈ V

2. Linearity in both slots (bilinearity): For all x,y, z ∈ V and all a,b ∈ R, we have �ax+by, z� =
a�x, z�+ b�y, z� and �x,ay+ bz� = a�x,y�+ b�x, z�.

3. Non-negativity: �x, x� � 0 for all x ∈ V , and �x, x� = 0 only if x = 0V .

EXAMPLES We can check that each of the following satisfies the requirements to be an inner prod-
uct.

1. The ordinary scalar product on Rn.

2. Let C be the vector space of all continuous real-valued functions on the interval [0, 1]. The
analogue of the ordinary scalar product on C is the inner product given by

�f,g� =
� 1

0
f(x)g(x)dx, for f,g ∈ C.
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On the space Mm×n(R), the Frobenius inner product or trace inner product is defined by
�A,B� = trace(ATB). Note that traceATB is the sum over all positions (i, j) of the products
AijBij. So this is closely related to the ordinary scalar product, if the matrices A and B were

regarded as vectors with mn entries over R.

It is possible for a single vector space to have many different inner products defined on it, and
if there is any risk of ambiguity we need to specify which one we are considering.

45


