
3.5 The Characteristic Polynomial

In this section we will discuss how to determine the eigenvalues of a given matrix. In practice, we
cannot always precisely determine them, but we can write down a polynomial whose coefficients
depend on the entries of the matrix, and whose roots are the eigenvalues.

Example 3.5.1. Find a matrix P with P−1AP diagonal, where A =

�
2 2
1 3

�

To answer this, we need to find two linearly independent eigenvectors of A. These are non-
zero solutions of
�

2 2
1 3

� �
x
y

�
= λ

�
x
y

�
=⇒ 2x+ 2y = λx

x+ 3y = λy
=⇒ 0 = (λ− 2)x− 2y

0 = −x+ (λ− 3)y =⇒
�
λ− 2 −2
−1 λ− 3

� �
x
y

�
=

�
0
0

�

So we are looking for non-zero solutions
�
x
y

�
of the system

�
λ− 2 −2
−1 λ− 3

� �
x
y

�
=

�
0
0

�

These can occur only if the coefficient matrix is non-invertible. If it is invertible, the only solution
is x = y = 0.

A 2 × 2 matrix is non-invertible if and only if its determinant is 0. The determinant of the 2 × 2

matrix
�
a b
c d

�
is ad− bc.

det
�
λ− 2 −2
−1 λ− 3

�
= (λ− 2)(λ− 3)− (−2)(−1) = λ2 − 5λ+ 4.

The characteristic polynomial of A is

det(λI−A) = λ2 − 5λ+ 4 = (λ− 4)(λ− 1).

The eigenvalues of A are the solutions of the characteristic equation det(λI − A) = 0, 1 and 4. The
eigenspace of A corresponding to λ = 1 is the set of all solutions of the system

�
2 2
1 3

� �
x
y

�
= 1

�
x
y

�
=⇒

�
1 − 2 −2
−1 1 − 3

� �
x
y

�
=

�
0
0

�

This is the nullspace of the matrix 1I−A =

�
−1 −2
−1 −2

�
, which is

��
−2t

t

�
, t ∈ R

�
.

An eigenvector of A for λ = 1 is any non-zero element of this space, for example
�
−2

1

�
.

The eigenspace of A corresponding to λ = 4 is the nullspace of the matrix 4I − A =

�
2 −2

−1 1

�
,

which is ��
t
t

�
, t ∈ R

�
.

An eigenvector of A for λ = 4 is any non-zero element of this space, for example
�

1
1

�
.

Conclusion: If P is a matrix whose columns are eigenvectors of A corresponding respectively to the

eigenvalues 1 and 4, for example P =

�
−2 1
1 1

�
, then P−1AP =

�
1 0
0 4

�
. Multiplying each column

of this P by a non-zero scalar gives alternative choices of P, with the same diagonal matrix P−1AP.

Switching the two columns of P would give a matrix Q with Q−1AQ =

�
4 0
0 1

�
.
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3.5.1 The Determinant (a digression)

For any 2 × 2 matrix A =

�
a b
c d

�
, we have

�
a b
c d

� �
d −b

−c a

�
=

�
ad− bc 0

0 ad− bc

�
= (ad− bc)I2.

From this matrix equation we have the following observations:

• If ad − bc = 0, then A is not invertible, because the columns
�

d
−c

�
and

�
−b
a

�
are in its

nullspace (and these are both zero only if A is the zero matrix).

• If ad− bc �= 0, then the equation shows that A−1 =
1

ad− bc

�
d −b

−c a

�
.

• The matrix A has an inverse if and only if ad−bc �= 0. This means that the number ad−bc
tells us whether or not the columns of A form a basis of F2 (or R2).

The equation above also prompts the following definitions

• The number (or field element) ad−bc is the determinant of the matrix A =

�
a b
c d

�
, denoted

by det(A) or sometimes |A|.

• The matrix A =

�
d −b

−c a

�
is the adjugate (sometimes called the adjoint) of A, denoted by

adj(A).

The version of the above equation for a 3 × 3 matrix A =



a b c
d e f
g h i


 is the following:



a b c
d e f
g h i






ei− fh −bi+ ch bf− ce
−di+ fg ai− cg −af+ cd
dh− eg −ah+ bg ae− bd


 = (aei− afh− bdi+ bfg+ cdh− ceg)I3.

This equation can be checked directly. The expression (aei− afh− bdi+ bfg+ cdh− ceg) is the
determinant of A, and the adjugate of A is the matrix on the right. Its entries are the determinants
of the nine 2 × 2 submatrices of A (some with a sign change). To see why this definition of the
3 × 3 determinant is consistent with the 2 × 2 version, we can write it as follows:



a b c
d e f
g h i







����
e f
h i

���� −

����
b c
h i

����
����
b c
e f

����

−

����
d f
g i

����
����
a c
g i

���� −

����
a c
d f

����
����
d e
g h

���� −

����
a b
g h

����
����
a b
d e

����




= (aei− afh− bdi+ bfg+ cdh− ceg� �� �
det(A)

)I3.

Definition 3.5.2. The minor Mi,j of the entry in the (i, j) position of a 3× 3 matrix A is the determinant
of the 2 × 2 matrix that remains when Row i and Column j are deleted from A.

Definition 3.5.3. The cofactor Ci,j of the entry in the (i, j) position of a 3 × 3 matrix A is either equal to

Mi,j or to −Mi,j, according to the following pattern of signs:



+ − +
− + −
+ − +




Definition 3.5.4. The adjugate of the 3 × 3 matrix A is the matrix that has Cj,i in the (i, j)-position. It
is the transpose of the matrix of cofactors of A.
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By looking at any of the three entries on the main diagonal of the product A× adj(A), we can
give the following description of the determinant of a 3 × 3 matrix.

Definition 3.5.5. The determinant of a 3 × 3 matrix is A can be found by choosing any row or column of
A, multplying each entry of that row or column by its own cofactor, and adding the results.

NOTES

1. Each of the definitions above applies to n × n matrices in general, and gives us a way to
recursively define a n× n determinant, in terms of (n− 1)× (n− 1) determinants.

2. The cofactor expansion method, described in Definition 3.5.5 above, is not generally the most
efficient way to compute a determinant (it is ok in the 3 × 3 case). But it can be taken as the
definition of a determinant.

3. In some special cases, the determinant is easier to compute. If A is upper or lower triangular,
then det(A) is the product of the entries on the main diagonal of A. If A has a square k× k
block A1 in the upper left, a square (n−k)× (n−k) block in the lower right, and only zeros
in the lower left (n− k)× k region, then det(A) = det(A1)det(A2).

4. For a pair of n × n matrices A and B, det(AB) = det(A)det(B). This is the multplicative
property of the determinant, or the Cauchy-Binet formula. It is not obvious at all.

3.5.2 Algebraic and Geometric Multiplicity

Example 3.5.6. Using cofactor expansion by the first column, we find that the characteristic poly-

nomial of B =




5 6 2
0 −1 −8
1 0 −2


 is

det(λI3 − B) = det



λ− 5 −6 −2

0 λ+ 1 8
−1 0 λ+ 2




= (λ− 5) ((λ+ 1)(λ+ 2)− 0(8)) + (−1) ((−6)(8)− (λ+ 1)(−2))
= (λ− 5)(λ2 + 3λ+ 2)− (2λ− 46)
= λ3 − 2λ2 − 15λ+ 36
= (λ− 3)(λ2 + λ− 12)
= (λ− 3)(λ+ 4)(λ− 3)
= (λ− 3)2(λ+ 4)

The eigenvalues of B are 3 (occurring twice as a root of the characteristic polynomial), and −4
(occurring once). We say that 3 has algebraic multplicity 2 and −4 has algebraic multiplicity 1 as an
eigenvalue of B. The geometric multplicity of each eigenvalue is the dimension of its corresponding
eigenspace.

The eigenspace of B corresponding to λ = 3 is the nullspace of the matrix

3I3 − B =



−2 −6 −2

0 4 8
−1 0 5




The RREF of this matrix is 


1 0 −5
0 1 2
0 0 0




and the nullspace consists of all vectors




5t
−2t

t


, where t ∈ R. This is the eigenspace of B cor-

responding to λ = 3. It has dimension 1, so 3 has geometric multiplicity 1 as an eigenvector of
B.
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Theorem 3.5.7. The geometric multplicity of an eigenvector is at most equal to its algebraic multiplicity.

Corollary 3.5.8. A matrix is diagonalizable if and only if the geometric multiplicity of each of its eigen-
values is equal to the algebraic multiplicity.
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