
3.4 Eigenvectors

Definition 3.4.1. Let T : V → V be a linear transformation, where V is a finite dimensional vector space.
A non-zero element v of V is a eigenvector of T if T(v) is a scalar multiple of v.

If v is an eigenvector of T , then the 1-dimensional subspace of V spanned by v, which consists
of all scalar multiples of v, is mapped to itself by T . It is said to be a T -invariant line.

Definition 3.4.2. If v is an eigenvector of T , then T(v) = λv for some scalar λ, and λ is called the
eigenvalue of T to which v corresponds.

Here is the matrix version.

Definition 3.4.3. Let A ∈ Mn(F). A vector v ∈ Fn is an eigenvector of A if Av = λv for some scalar
λ ∈ F, called the eigenvalue of A to which v corresponds.

Given a matrix A and a vector v, it is quite a straightforward task to determine whether v is an
eigenvector of A, and to determine the corresponding eigenvalue if so - just calculate the matrix-
vector product Av and see if it is a scalar multiple of v. In fact, given a vector v, we can construct
a matrix that has v as an eigenvector, with our favourite scalar as an eigenvalue.

Example 3.4.4. Find a matrix A ∈ M3(R) that has v =




1
2
3


 as an eigenvector, corresponding to the

eigenvalue 28.

To do this, write u1,u2,u3 as the three rows of A. What we need is that u1v = 28(1) = 28,
u2v = 28(2) = 56, u3v = 28(3) = 84. The easy way to arrange this is to choose u1 = (28 0 0),
u2 = (0 28 0), u3 = (0 0 28), so that A = 28I3. This answer is correct but we can find others, and
the conditions on u1,u2,u3 are independent. For example we can choose

u1 = (3 2 3), u2 = (0 − 2 20), u3 = (5 2 25)

to get A =




3 2 3
0 −2 20
5 2 25


, and it is easily confirmed that Av = 28v.

Exercise: Show that the set of matrices in M3(R) that satisfy Mv = 28v is a subspace of M3(R).

Example 3.4.5. Show that
�

3
4

�
is an eigenvector of

�
−2 9

8 4

�
and find the corresponding eigen-

value. �
−2 9

8 4

� �
3
4

�
=

�
30
40

�
= 10

�
3
4

�
.

The corresponding eigenvalue is 10.

Diagonal matrices.
A harder problem is to find the eigenvectors of a matrix or linear trasformation, given only

the matrix or linear transformation itself. For example, suppose that

B =




5 6 2
0 −1 −8
1 0 −2


 .

Finding an eigenvector of B means finding solutions for x,y, z and λ, to the following system of
equations, where the values of x,y, z are not all zero.




5 6 2
0 −1 −8
1 0 −2





x
y
z


 = λ



x
y
z




If λ is regarded as a variable, this is not a system of linear equations. Where to begin?
It turns out that the key to making progress is to find the eigenvalues first, even if it’s the

eigenvectors that we want. To see why, we show that the number of distinct eigenvalues of a
n× n matrix cannot exceed n.
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Theorem 3.4.6. Let A ∈ Mn(F) and let v1, . . . , vk be eigenvectors of A in Fn, corresponding to distinct
eigenvalues λ1, . . . , λk of A. Then {v1, . . . , vk} is a linearly independent subset of Fn.

Idea of Proof : First suppose that k = 2, and suppose that a1v1 + a2v2 = 0, for scalars a and b in F.
We need to show that a1 = a2 = 0. Multiplying the expression a1v1 + a2v2 on the left by A, we
have

a1Av1 + a1Av2 = 0 =⇒ a1λ1v1 + a2λ2v2 = 0.

Multiplying the same expression by the scalar λ1 gives

a1λ1v1 + a2λ1v2 = 0.

Subtracting one of these expressions from the other gives

a2(λ1 − λ2)v2 = 0.

Now v2 is not the zero vector because it is an eigenvector of A, and λ1 − λ2 is not zero, because λ1
and λ2 are distinct eigenvalues. So it must be that a2 = 0. Since a1v1 + a2v2 = 0, it follows that
a1 = 0 also, since v1 is not the zero vector (begin an eigenvector of A). We conclude that the zero
vector can be written as a linear combination of v1 and v2 only if both coefficients are zero, which
means that {v1, v2} is a linearly independent set.

The proof in the general situation uses exactly this idea.

Proof. If {v1, . . . , vk} is linearly dependent, then there are expressions for the zero vector as a linear
combination of v1, . . . , vk in which the coefficients are not all zero. Let d be the least number of
non-zero coefficients in any such expression, and (after reordering the vi and λi if necessary),
suppose that

a1v1 + · · ·+ advd = 0,

with d � 2 and each ai is a non-zero element of F. Multiplying this equation respectively by A
(on the left) and by λ1 gives

a1λ1v1 + a2λ2v2 + · · ·+ adλdvd = 0
a1λ1v1 + a2λ1v2 + · · ·+ adλ1vd = 0

Subtracting the second equation from the first gives

a2(λ2 − λ1)v1 + a3(λ3 − λ1)v2 + · · ·+ ad(λd − λ1)vd = 0.

None of the coefficients in this linear combination of v2, . . . , vd are zero, since the ai are all non-
zero and the λi are all distinct. So this is a non-trivial expression for the zero vector as a linear
combination of v1, . . . , vk with fewer than d non-zero coefficients, which contradicts the choice of
d. We conclude that {v1, . . . , vk} is a linearly independent subset of Fn.

The following consequence of Theorem 3.4.6 suggests that we may have some chance of being
able to find the eigenvalues of a n× n matrix, or at least that there are not too many of them.

Corollary 3.4.7. Let A ∈ Mn(F). Then A has at most n distinct eigenvalues in F.

Proof. If A has k distinct eigenvalues, with corresponding eigenvectors v1, . . . , vk in Fn, then k
cannot exceed the dimension of Fn, since {v1, . . . , vk} is a linearly indepedent set in Fn. Hence
k � n.
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