3.4 Eigenvectors

Definition 3.4.1. Let $T : V \to V$ be a linear transformation, where V is a finite dimensional vector space. A non-zero element v of V is a eigenvector of T if T(v) is a scalar multiple of v.

If v is an eigenvector of T, then the 1-dimensional subspace of V spanned by v, which consists of all scalar multiples of v, is mapped to itself by T. It is said to be a T-*invariant* line.

Definition 3.4.2. If ν is an eigenvector of T, then $T(\nu) = \lambda \nu$ for some scalar λ , and λ is called the eigenvalue of T to which ν corresponds.

Here is the matrix version.

Definition 3.4.3. Let $A \in M_n(\mathbb{F})$. A vector $v \in \mathbb{F}^n$ is an eigenvector of A if $Av = \lambda v$ for some scalar $\lambda \in \mathbb{F}$, called the eigenvalue of A to which v corresponds.

Given a matrix A and a vector v, it is quite a straightforward task to determine whether v is an eigenvector of A, and to determine the corresponding eigenvalue if so - just calculate the matrix-vector product Av and see if it is a scalar multiple of v. In fact, given a vector v, we can construct a matrix that has v as an eigenvector, with our favourite scalar as an eigenvalue.

Example 3.4.4. Find a matrix $A \in M_3(\mathbb{R})$ that has $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ as an eigenvector, corresponding to the

eigenvalue 28.

To do this, write u_1, u_2, u_3 as the three rows of A. What we need is that $u_1v = 28(1) = 28$, $u_2v = 28(2) = 56$, $u_3v = 28(3) = 84$. The easy way to arrange this is to choose $u_1 = (28 \ 0 \ 0)$, $u_2 = (0 \ 28 \ 0)$, $u_3 = (0 \ 0 \ 28)$, so that $A = 28I_3$. This answer is correct but we can find others, and the conditions on u_1, u_2, u_3 are independent. For example we can choose

$$u_1 = (3 \ 2 \ 3), \ u_2 = (0 \ -2 \ 20), \ u_3 = (5 \ 2 \ 25)$$

to get $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & -2 & 20 \\ 5 & 2 & 25 \end{bmatrix}$, and it is easily confirmed that Av = 28v.

Exercise: Show that the set of matrices in $M_3(\mathbb{R})$ that satisfy $M\nu = 28\nu$ is a *subspace* of $M_3(\mathbb{R})$.

Example 3.4.5. Show that $\begin{bmatrix} 3\\4 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} -2 & 9\\8 & 4 \end{bmatrix}$ and find the corresponding eigenvalue. $\begin{bmatrix} -2 & 9\\8 & 4 \end{bmatrix} \begin{bmatrix} 3\\4 \end{bmatrix} = \begin{bmatrix} 30\\40 \end{bmatrix} = 10 \begin{bmatrix} 3\\4 \end{bmatrix}.$

The corresponding eigenvalue is 10.

Diagonal matrices.

A harder problem is to find the eigenvectors of a matrix or linear trasformation, given only the matrix or linear transformation itself. For example, suppose that

$$\mathsf{B} = \begin{bmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}.$$

Finding an eigenvector of B means finding solutions for x, y, z and λ , to the following system of equations, where the values of x, y, z are not all zero.

5	6	2]	[x]		$\begin{bmatrix} x \end{bmatrix}$	
0	$\begin{array}{c} 6 \\ -1 \\ 0 \end{array}$	-8	y	$=\lambda$	y	
5 0 1	0	-2	$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	$=\lambda$	$\lfloor z \rfloor$	

If λ is regarded as a variable, this is not a system of linear equations. Where to begin?

It turns out that the key to making progress is to find the *eigenvalues* first, even if it's the eigenvectors that we want. To see why, we show that the number of distinct eigenvalues of a $n \times n$ matrix cannot exceed n.

Theorem 3.4.6. Let $A \in M_n(\mathbb{F})$ and let v_1, \ldots, v_k be eigenvectors of A in \mathbb{F}^n , corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ of A. Then $\{v_1, \ldots, v_k\}$ is a linearly independent subset of \mathbb{F}^n .

Idea of Proof: First suppose that k = 2, and suppose that $a_1v_1 + a_2v_2 = 0$, for scalars a and b in \mathbb{F} . We need to show that $a_1 = a_2 = 0$. Multiplying the expression $a_1v_1 + a_2v_2$ on the left by A, we have

$$a_1Av_1 + a_1Av_2 = 0 \Longrightarrow a_1\lambda_1v_1 + a_2\lambda_2v_2 = 0.$$

Multiplying the same expression by the scalar λ_1 gives

$$a_1\lambda_1\nu_1+a_2\lambda_1\nu_2=0.$$

Subtracting one of these expressions from the other gives

$$\mathfrak{a}_2(\lambda_1-\lambda_2)\mathfrak{v}_2=0$$

Now v_2 is not the zero vector because it is an eigenvector of A, and $\lambda_1 - \lambda_2$ is not zero, because λ_1 and λ_2 are distinct eigenvalues. So it must be that $a_2 = 0$. Since $a_1v_1 + a_2v_2 = 0$, it follows that $a_1 = 0$ also, since v_1 is not the zero vector (begin an eigenvector of A). We conclude that the zero vector can be written as a linear combination of v_1 and v_2 only if both coefficients are zero, which means that { v_1, v_2 } is a linearly independent set.

The proof in the general situation uses exactly this idea.

Proof. If $\{v_1, \ldots, v_k\}$ is linearly dependent, then there are expressions for the zero vector as a linear combination of v_1, \ldots, v_k in which the coefficients are *not* all zero. Let d be the least number of non-zero coefficients in any such expression, and (after reordering the v_i and λ_i if necessary), suppose that

$$\mathfrak{a}_1\mathfrak{v}_1+\cdots+\mathfrak{a}_d\mathfrak{v}_d=0,$$

with $d \ge 2$ and each a_i is a non-zero element of \mathbb{F} . Multiplying this equation respectively by A (on the left) and by λ_1 gives

$$\begin{aligned} a_1\lambda_1\nu_1 + a_2\lambda_2\nu_2 + \cdots + a_d\lambda_d\nu_d &= 0\\ a_1\lambda_1\nu_1 + a_2\lambda_1\nu_2 + \cdots + a_d\lambda_1\nu_d &= 0 \end{aligned}$$

Subtracting the second equation from the first gives

$$a_2(\lambda_2 - \lambda_1)v_1 + a_3(\lambda_3 - \lambda_1)v_2 + \dots + a_d(\lambda_d - \lambda_1)v_d = 0.$$

None of the coefficients in this linear combination of v_2, \ldots, v_d are zero, since the a_i are all nonzero and the λ_i are all distinct. So this is a non-trivial expression for the zero vector as a linear combination of v_1, \ldots, v_k with fewer than d non-zero coefficients, which contradicts the choice of d. We conclude that $\{v_1, \ldots, v_k\}$ is a linearly independent subset of \mathbb{F}^n .

The following consequence of Theorem 3.4.6 suggests that we may have some chance of being able to find the eigenvalues of a $n \times n$ matrix, or at least that there are not too many of them.

Corollary 3.4.7. Let $A \in M_n(\mathbb{F})$. Then A has at most n distinct eigenvalues in \mathbb{F} .

Proof. If A has k distinct eigenvalues, with corresponding eigenvectors v_1, \ldots, v_k in \mathbb{F}^n , then k cannot exceed the dimension of \mathbb{F}^n , since $\{v_1, \ldots, v_k\}$ is a linearly independent set in \mathbb{F}^n . Hence $k \leq n$.

The following consequence is also important and useful.

Corollary 3.4.8. Let $A \in M_n(\mathbb{F})$ and suppose that A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ in \mathbb{F} . Then A is diagonalizable, and A is similar to the matrix $diag(\lambda_1, \ldots, \lambda_n)$.

Proof. Let v_1, \ldots, v_n be eigenvectors of A in \mathbb{F}^m , corresponding to $\lambda_1, \ldots, \lambda_n$ respectively. Then (v_1, \ldots, v_n) is an (ordered) basis of \mathbb{F}^n , by Theorem 3.4.6. If P is the matrix with columns v_1, \ldots, v_n , then $P^{-1}AP = diag(\lambda_1, \ldots, \lambda_n)$.

If a $n \times n$ matrix has fewer than n distinct eigenvalues, then it may or may not be diagonalizable. The two examples below indicate two ways in which a matrix in $M_n(\mathbb{F})$ could fail to be diagonalizable in $M_n(\mathbb{F})$.

Example 3.4.9. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ in $M_2(\mathbb{R})$. Suppose that $\begin{vmatrix} x \\ y \end{vmatrix}$ is an eigenvector of A. Then

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \Longrightarrow \begin{array}{c} x + y &=& \lambda x \\ y &=& \lambda y \end{array}$

The second equation says that y = 0 or $\lambda = 1$. If y = 0, then the first equation says $x = \lambda x$. Since x and y cannot both be 0 in an eigenvector, it follows that $\lambda = 1$ anyway. Thus $\lambda = 1$ is the *only* possible eigenvalue of A. The non-zero vector $\begin{bmatrix} x \\ y \end{bmatrix}$ is an eigenvector of A corresponding to $\lambda = 1$ if and only if x + y = x and y = y. The first equation says y = 0, and x may have any value. The eigenvectors of A are all vectors of the form $\begin{bmatrix} x \\ 0 \end{bmatrix}$, where $x \neq 0$ in \mathbb{R} , i.e. all scalar multiples of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. These comprise only a 1-dimensional subspace of \mathbb{R}^2 , os \mathbb{R}^2 does not have a basis consisting of eigenvectors of A, and A is not diagonalizable.

The point of the following example is to show that if A is a matrix in $M_n(\mathbb{F})$, the eigenvalues of A may not be in \mathbb{F} but in a bigger field.

Example 3.4.10. Let $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ in $M_2(\mathbb{R})$.

Note that B is the matrix of a counter-clockwise rotation through $\frac{p_i}{2}$ about the origin in \mathbb{R}^2 . From that geometric intepretation we can see that B has no eigenvector in \mathbb{R}^2 , since no line in \mathbb{R}^2 is preserved by this rotation. We can also see this algebraically.

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \implies \begin{array}{c} y = \lambda x \\ -x = \lambda y \end{array}$$

Looking at both of these equations, we have $y = \lambda x = \lambda(-\lambda y) \longrightarrow y = -\lambda^2 y$.

If y = 0, then x = 0 which does not give an eigenvector. If $y \neq 0$, then $y = -\lambda^2 y$ means $\lambda^2 = -1$, which is not satisfied by any real number λ . This means that B has no real eigenvalue and no eigenvector in \mathbb{R}^2 . However, if we allow complex values for λ , then $\lambda = i$ and $\lambda = -i$ satisfy $\lambda^2 = -1$. To find corresponding eigenvectors:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = i \begin{bmatrix} x \\ y \end{bmatrix} \Longrightarrow \begin{array}{c} y = ix \\ -x = iy \end{array}$$

So $\begin{bmatrix} 1 \\ i \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue i. For the eigenvalue -i:

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -i \begin{bmatrix} x \\ y \end{bmatrix} \Longrightarrow \begin{array}{c} y & = & -ix \\ -x & = & -iy \end{array}$$

So $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ is an eigenvector corresponding to the eigenvalue i. We conclude that B is not diagonalizable in $M_2(\mathbb{R})$ but that it is similar in $M_2(\mathbb{C})$ to the diagonal matrix $\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$.

Learning Outcomes for Section 3.4

- 1. To define an eigenvector of a linear transformation or of a square matrix.
- 2. To know that eigenvectors corresponding to different eigenvalues are linearly independent.
- 3. And that this means a $n \times n$ matrix can have at most n distinct eigenvalues
- and that it is diagonalizable if it does have n distinct eigenvalues.