3.4 Eigenvectors

Definition 3.4.1. Let T : V — V be a linear transformation, where V is a finite dimensional vector space.
A non-zero element v of V is a eigenvector of T if T(v) is a scalar multiple of v.

If v is an eigenvector of T, then the 1-dimensional subspace of V spanned by v, which consists
of all scalar multiples of v, is mapped to itself by T. It is said to be a T-invariant line.

Definition 3.4.2. If v is an eigenvector of T, then T(v) = Av for some scalar A, and A is called the
eigenvalue of T to which v corresponds.

Here is the matrix version.

Definition 3.4.3. Let A € M, (FF). A vector v € F™ is an eigenvector of A if Av = Av for some scalar
A € I, called the eigenvalue of A to which v corresponds.

Given a matrix A and a vector v, it is quite a straightforward task to determine whether v is an
eigenvector of A, and to determine the corresponding eigenvalue if so - just calculate the matrix-
vector product Av and see if it is a scalar multiple of v. In fact, given a vector v, we can construct
a matrix that has v as an eigenvector, with our favourite scalar as an eigenvalue.

1

Example 3.4.4. Find a matrix A € M3(R) that has v = |2| as an eigenvector, corresponding to the
3

eigenvalue 28.

To do this, write uq, uy, us as the three rows of A. What we need is that uw;v = 28(1) = 28,
upv = 28(2) = 56, uzv = 28(3) = 84. The easy way to arrange this is to choose u; = (28 0 0),
u, = (0 28 0), uz = (0 0 28), so that A = 2815. This answer is correct but we can find others, and
the conditions on 14, uy, us are independent. For example we can choose

w=0323), u=(0 —220), us= (52 25)

3 2 3
toget A= |0 —2 20|, and itis easily confirmed that Av = 28v.
5 2 25

Exercise: Show that the set of matrices in M3(R) that satisfy Mv = 28v is a subspace of M3(R).

Example 3.4.5. Show that [ﬂ is an eigenvector of [_g Z} and find the corresponding eigen-

s 3= ] ol

The corresponding eigenvalue is 10.

value.

Diagonal matrices.
A harder problem is to find the eigenvectors of a matrix or linear trasformation, given only
the matrix or linear transformation itself. For example, suppose that

5 6 2
B=|0 -1 -8
1 0 -2

Finding an eigenvector of B means finding solutions for x,y, z and A, to the following system of
equations, where the values of x, y, z are not all zero.

5 6 2] |x X
0 -1 =8| [y]| =A|y
1 0 -2 |z z

If A is regarded as a variable, this is not a system of linear equations. Where to begin?

It turns out that the key to making progress is to find the eigenvalues first, even if it’s the
eigenvectors that we want. To see why, we show that the number of distinct eigenvalues of a
N X n matrix cannot exceed .
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Theorem 3.4.6. Let A € M, (F) and let vy, ..., vy be eigenvectors of A in F™, corresponding to distinct
eigenvalues A1, ..., A\ of A. Then {v1,..., v} is a linearly independent subset of F™.

Idea of Proof: First suppose that k = 2, and suppose that a;v; + apv, = 0, for scalars a and b in F.
We need to show that a; = a, = 0. Multiplying the expression a;v; + ayv, on the left by A, we
have

a1Avi + a1Avy = 0 = a1A1v1 + axAv, = 0.

Multiplying the same expression by the scalar A; gives
aA1v1 + apAve = 0.
Subtracting one of these expressions from the other gives
az(A1 —A2)vp =0.

Now v, is not the zero vector because it is an eigenvector of A, and A; — A; is not zero, because A
and A, are distinct eigenvalues. So it must be that a, = 0. Since a;v; + azv2 = 0, it follows that
a; = 0 also, since v; is not the zero vector (begin an eigenvector of A). We conclude that the zero
vector can be written as a linear combination of v; and v, only if both coefficients are zero, which
means that {v{, v,} is a linearly independent set.

The proof in the general situation uses exactly this idea.

Proof. If {v1,...,vi}is linearly dependent, then there are expressions for the zero vector as a linear
combination of vq,...,vi in which the coefficients are not all zero. Let d be the least number of
non-zero coefficients in any such expression, and (after reordering the v; and A; if necessary),
suppose that

aivi +---+agvq =0,
with d > 2 and each a; is a non-zero element of F. Multiplying this equation respectively by A
(on the left) and by A; gives

C117\1V1 + Clz)\sz +--- adAdvd =0

ajAv1 + apA1vo + -+ agAiva
Subtracting the second equation from the first gives
a2(A2 = A)vi + az(As — A )va + -+ aa(Ag — MJva = 0.

None of the coefficients in this linear combination of vy, ..., vq4 are zero, since the a; are all non-
zero and the A; are all distinct. So this is a non-trivial expression for the zero vector as a linear
combination of vy, ..., vx with fewer than d non-zero coefficients, which contradicts the choice of
d. We conclude that {vy, ..., vi}is a linearly independent subset of F™. O

The following consequence of Theorem 3.4.6 suggests that we may have some chance of being
able to find the eigenvalues of a n x n matrix, or at least that there are not too many of them.

Corollary 3.4.7. Let A € My (IF). Then A has at most n distinct eigenvalues in F.

Proof. If A has k distinct eigenvalues, with corresponding eigenvectors vy, ..., v, in F™, then k
cannot exceed the dimension of F™, since {v;,..., vk} is a linearly indepedent set in F™. Hence
k<n O

The following consequence is also important and useful.

Corollary 3.4.8. Let A € M, (IF) and suppose that A has n distinct eigenvalues Ay, ..., A inIF. Then A
is diagonalizable, and A is similar to the matrix diag(A, ..., An).

Proof. Let vy,..., v, be eigenvectors of A in F™, corresponding to Ay, ..., A, respectively. Then
(vi,...,vn) is an (ordered) basis of F™*, by Theorem 3.4.6. If P is the matrix with columns vy, ..., vy,
then P~1AP = diag(Ay, ..., An). O
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If a n x n matrix has fewer than n distinct eigenvalues, then it may or may not be diagonal-
izable. The two examples below indicate two ways in which a matrix in M, (IF) could fail to be
diagonalizable in M, (FF).

Example 3.4.9. Let A = [(1) ﬂ in M, (R).

Suppose that B] is an eigenvector of A. Then

[1 1} [x]}\[x}: x+y = Ax
0 1] |y y y = Ay

The second equation says thaty = 0 or A = 1. If y = 0, then the first equation says x = Ax. Since
x and y cannot both be 0 in an eigenvector, it follows that A = 1 anyway. Thus A = 1 is the only

possible eigenvalue of A. The non-zero vector [ﬂ is an eigenvector of A corresponding toA =1
if and only if x +y = x and y = y. The first equation says y = 0, and x may have any value. The

eigenvectors of A are all vectors of the form where x # 0in R, i.e. all scalar multiples of B} .

X
ol’
These comprise only a 1-dimensional subspace of R?, os R? does not have a basis consisting of
eigenvectors of A, and A is not diagonalizable.

The point of the following example is to show that if A is a matrix in M, (F), the eigenvalues
of A may not be in I but in a bigger field.
0 —1
1 0
Note that B is the matrix of a counter-clockwise rotation through 2 about the origin in R2.
From that geometric intepretation we can see that B has no eigenvector in R?, since no line in R?
is preserved by this rotation. We can also see this algebraically.

ISR M v

Looking at both of these equations, we have y = Ax = A(—Ay) — y = —A%y.

Example 3.4.10. Let B = { } in M;(R).

If y = 0, then x = 0 which does not give an eigenvector. If y # 0, then y = —A?y means
A? = —1, which is not satisfied by any real number A. This means that B has no real eigenvalue
and no eigenvector in R?. However, if we allow complex values for A, then A = iand A = —i
satisfy A> = —1. To find corresponding eigenvectors:

ISR MR s

1. . . . :
So {i is an eigenvector corresponding to the eigenvalue i.

b bl

11. . . . .
So {_J is an eigenvector corresponding to the eigenvalue i.

For the eigenvalue —i:
—ix
—iy

We conclude that B is not diagonalizable in M, (R) but that it is similar in M, (C) to the diagonal
.1 0

matrix [O _J .

Learning Outcomes for Section 3.4

1. To define an eigenvector of a linear transformation or of a square matrix.
2. To know that eigenvectors corresponding to different eigenvalues are linearly independent.
3. And that this means a n x n matrix can have at most n distinct eigenvalues

4. and that it is diagonalizable if it does have n distinct eigenvalues.
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