
Theorem 3.2.6. Rank-Nullity Theorem, matrix version Let A be any m×n matrix, with entries in a field
F. Then n is the sum of the dimension of the right nullspace of A and the dimension of the column space of
A.

The dimension of the columns space of a matrix A is called the column rank of A.

LEARNING OUTCOMES FOR THIS SECTION

1. To recall the defintion of a linear transformation
as a function between vector spaces that respects the addition and scalar multiplication
operations.

2. To note that left multiplication by any m× n matrix is a linear transformation from Fn to Fm,
and that the columns of the matrix are the images of the standard basis vectors of Fn

3. That every linear transformation can be represented as left multiplication by a matrix,
after choosing bases for the domain and target spaces. For relatively small and manageable
examples, you should be able to write down the matrix that does this, and realize that it
depends on the choice of basis (we will come back to this point).

4. To recognize the terms kernel, image, nullspace, nullity, rank and column space.

5. To be able to state and interpret the Rank-Nullity Theorem, in its versions for matrices and for linear
transformations
The proof is important too, but understanding the statement is more important. One way
to think of it informally is that if we apply a linear transformation to a space of dimension
n, the image need not have the full dimension n, because some of the elements might be
mapped to zero, and so not be “recoverable” in the image (these are the elements of the
kernel). But the full dimension n has to be accounted for by the combination of the kernel
or the image - their dimensions must add up to n.

3.3 Similarity

In this section we will consider the algebraic relationship between two square matrices that rep-
resent the same linear transformation, from a vector space to itself, with respect to different bases.

Example 3.3.1. Let T : R3 → R3 be the linear transformation defined by v → Av, where

A =



−2 2 1

4 5 −1
−4 −8 3




Let B be the (ordered) basis of R3 with elements b1 =




1
0
4


 , b2 =




2
−1

0


 , b3 =




4
0
2




What is the matrix A � of T with respect to B?

The columns of A � have the B-coordinates of T(b1), T(b2) and T(b3).

T(b1) =




−2 2 1
4 5 −1

−4 −8 3






1
0
4


 =




2
0
8


 = 2b1 =⇒ [T(b1)]B =




2
0
0




T(b2) =




−2 2 1
4 5 −1

−4 −8 3






2
−1

0


 =




−6
3
0


 = −3b2 =⇒ [T(b2)]B =




0
−3

0




T(b3) =




−2 2 1
4 5 −1

−4 −8 3






0
−1

2


 =




0
−7
14


 = 7b3 =⇒ [T(b3)]B =




0
0
7
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We conclude that the matrix of T with respect to B � is

A � =




2 0 0
0 −3 0
0 0 7


 .

This means: for any v ∈ R3,
[T(v)]B = A �[v]B.

The relation of similarity. Staying with this example for now, we consider the relationship be-
tween A and A � from another viewpoint. Let P be the matrix with the basis vectors from B as
columns. From Section 3.1, we know that P−1 is the change of basis matrix from the standard ba-
sis to B. This means that for any element v of R3, its B-coordinate are given by the matrix-vector
product

[v]B = P−1v.

Equivalently, if we start with the B-coordinates, then the standard coordinates of v are given by

v = P[v]B.

So P itself is the change of basis matrix from B to the standard basis. Suppose we only knew
about A (and had not already calculated A �). We have a basis B whose columns form the matrix
P. To figure out the matrix of T with respect to B:

1. Start with an element of R3, written in its B-coordinates: [v]B

2. Convert the vector to its standard coordinates (so that we can apply T by multiplying by A):
this means taking the product P[v]B

3. Now apply T : this means taking the product AP[v]B. This vector has the standard coordi-
nates of T(v).

4. To convert this to B-coordinates, apply the change of basis matrix from standard to B, which
is P−1: this means taking the product P−1AP[v]B. This vector has the B-coordinates of T(v).

5. Conclusion: For any element v of R3, the B-coordinates of T(v) are given by

(P−1AP)[v]B.

This conclusion is saying that the matrix of T with respect to B is P−1AP, where A is the matrix
of T with respect to the standard basis, and P is the matrix with the (standard) elements of B as
columns.

Definition 3.3.2. Let F be a field. Two matrices A and B in Mn(F) are similar if there exists an invertible
matrix P ∈ Mn(F) for which B = P−1AP.

Notes

1. Two distinct matrices in Mn(F) are similar if and only if they represent the same linear
transformation from Fn to Fn, with respect to different bases.

2. As the examples A and A � above show, it is not generally easy to tell by glancing at a pair
of square matrices whether they are similar or not, but there is one feature that is easy to
check. The trace of a square matrix is the sum of the entries on the main diagonal, from top
left to bottom right. If two matrices are similar, they have the same trace.

3. Similar matrices also have some other features in common, including having the same de-
terminant. But we have not discussed determinants yet (coming soon).

Item 2. above is a consequence of the following lemma.

Lemma 3.3.3. Let A,B ∈ Mn(F). Then trace(AB) = trace(BA).
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Consequence: For any square matrix A and any invertible matrix P, both in Mn(F), trace(P−1AP) =
trace(AP)P−1 = traceA, so similar matrices always have the same trace.

Proof. (of the Lemma). We calculate the trace of AB in terms of the entries of A and B.

trace(AB) =

n�

i=1

(AB)ii

=

n�

i=1

(sumn
k=1AikBki) .

This is the sum over all positions (i,k) of a n× n matrix of the expressions

(entry in (i, k)-position of A)× (entry in (k, i)-position of B).

This sum does not change if the roles of A and B are switched, so AB and BA have the same
trace.

In Example 3.3.1, we found that the 3 × 3 matrix A is similar to the diagonal matrix A � =
diag(2. − 3, 7). We say that A is diagonalizable, which means that it is similar to a diagonal matrix.
It T : R3 → R3 is left multiplication by A, then A � is the matrix of T with respect to the basis B =
(b1,b2,b3), and the basis elements b1,b2,b3 are the columns of the matrix P for which P−1AP =
A �.
Two (equivalent) observations about this setup:

1. From the diagonal form of A � we have T(b1) = 2b1, T(b2) = −3b2 and T(b3) = 7(b3). This
means that each of the basis elements b1,b2,b3 is mapped by T to a scalar multiple of itself
- each of them is an eigenvector of T .

2. We can rearrange the version P−1AP = A � to AP = PA �. Bearing in mind that P =


| | |

b1 b2 b3
| | |


 and that A � = diag(2,−3, 7), this is saying that

A




| | |

b1 b2 b3
| | |


 =




| | |

b1 b2 b3
| | |






2 0 0
0 −3 0
0 0 7


 =⇒




| | |

Ab1 Ab2 Ab3
| | |


 =




| | |

2b1 −3b2 7b3
| | |




This means that Ab1 = 2b1, Ab2 = −3b2 and Ab3 = 7b3, so that B = {b1,b2,b3} is a basis of
R3 consisting of eigenvectors of A.

Definition 3.3.4. Let T : V → V be a linear transformation from a vector space V to itself. An eigenvec-
tor of T is a non-zero element v of V for which T(v) = λv for some scalar λ (called the eigenvalue of T to
which v corresponds).

In this situation, T can be represented by a diagonal matrix if and only if V has a basis consist-
ing of eigenvectors of T .

Definition 3.3.5. (Matrix Version). Let A ∈ Mn(F). An eigenvector of A is a non-zero vector v ∈ Fn

for which Av = λv for a scalar λ (called the eigenvalue of A to which v corresponds).

The matrix A is diagonalizable (similar to a diagonal matrix) if and only if there is a basis of
Fn consisting of eigenvectors of A.
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