
Lecture 21: Real Inner Products

Let V be a vector space over R. An inner product on V is a function
from V × V to R that assigns an element of R to every ordered pair of
elements of V , and has the following properties. We write �x , y� for the
inner product of x and y , and write the function as �·, ·� : V × V → R.

1 Symmetry: �x , y� = �y , x� for all x , y ∈ V

2 Linearity in both slots (bilinearity): For all x , y , z ∈ V and all
a, b ∈ R, we have �ax + by , z� = a�x , z�+ b�y , z� and
�x , ay + bz� = a�x , y�+ b�x , z�.

3 Non-negativity: �x , x� ≥ 0 for all x ∈ V , and �x , x� = 0 only if
x = 0V .
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Examples of inner products

1 The ordinary scalar product on Rn.

2 Let C be the vector space of all continuous real-valued functions on
the interval [0, 1]. The analogue of the ordinary scalar product on C
is the inner product given by

�f , g� =
� 1

0
f (x)g(x) dx , for f , g ∈ C .

3 On the space Mm×n(R), the Frobenius inner product or trace inner
product is defined by �A,B� = trace(ATB). Note that traceATB is
the sum over all positions (i , j) of the products AijBij . So this is
closely related to the ordinary scalar product, if the matrices A and
B were regarded as vectors with mn entries over R.

It is possible for a single vector space to have many different inner
products defined on it, and if there is any risk of ambiguity we need to
specify which one we are considering.
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Length, Distance and Orthogonality

Given a real vector space and equipped with an inner product �·, ·, �, we
make the following two definitions.

Definition We define the length or norm of any vector v by

||v || =
�
�v , v�,

and we define the distance between the vectors u and v by

d(u, v) = ||u − v ||.

Definition We say that vectors u and v are orthogonal (with respect to
�·, ·, �) if �u, v� = 0.

These definitions are consistent with “typical” geometrically motivated
concepts of distance and orthogonality.
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Unit Vectors and Scaling

An element v of V is referred to as a unit vector if ||v || = 1.
The norm of elements of V has the property that ||cv || = |c |z , ||v || for
any vector v and real scalar c . To see this we can note that

||cv || =
�
�cv , cv� =

�
c2�v , v� = c ||v ||.

So we can adjust the norm of any element of V , while preserving its
direction, by multplying it by a positive scalar.

Definition If v is a non-zero vector in an inner product space V , then

v̂ :=
1

||v ||v

is a unit vector in the same direction as v , referred to as the
normalization of v .
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Orthogonal Projection

Lemma Let u and v be non-zero vectors in an inner product space V .
Then it is possible to write v = au + v �, where a is scalar and v � is
orthogonal to u.

If v is orthogonal to u, take a = 0 and v � = v .
If v is a scalar multiple of u, take au = v and v � = 0.
Otherwise, to solve (for the scalar a) in the equation v = au + v � (with
u ⊥ v �), take the inner product with u on both sides. Then

�u, v� = a�u, u�+ 0 =⇒ a =
�u, v�
||u||2 .

We conclude that v = �u,v�
||u||2 u + (v − �u,v�

||u||2 u). We can verify directly that

the two components in this expression are orthogonal to each other.

Example In R2, write u =
�2
1

�
and v =

� 6
−2

�
.
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Orthogonal projection of one vector on another

Definition

For non-zero vectors u and v in an inner product space V , the vector
�u, v�
||u||2 u is called the projection of v on the 1-dimensional space spanned

by u. It is denoted by proju(v) and it has the property that v − proju(v)
is orthogonal to u.

Lemma

proju(v) is the unique element of �u� whose distance from v is minimal.

Proof Let au be a scalar multiple of u. Then

d(au, v)2 = �au − v , au − v� = a2�u, u� − 2a�u, v�+ �v , v�

Regarded as a quadratic function of a, this has a minimum when its

derivative is 0, i.e. when 2a�u, u� − 2�u, v� = 0, when a =
�u, v�
||u||2 .
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Orthogonal Bases (the Gram-Schmidt process)

Let V be a finite-dimensional inner product space, with a given basis
B = {b1, b2, ... bn}.
A basis B is called orthogonal if its elements are all orthogonal to each
other.
We can adjust B to an orthogonal basis B� = {v1, ... , vn} as follows.

1 Write v1 = b1.

2 Write v2 = b2 − projv1(v2) = b2 −
�b1, b2�
||b1||2

b1.

Then the pairs b1, b2 and v1, v2 span the same space, and v1 ⊥ v2.
3 Write v3 = b3 − projv1(b3)− projv2(b3).

Then the sets v1, v2, v3 and b1, b2, b3 span the same space, and v3 is
orthogonal to both v1 and v2.
To see this note that

�v1, v3� = �v1, b3� −
�v1, b3�
�v1, v1�

�v1, v1� − c✘✘✘✘�v1, v2�

4 Continue in this way - at the kth step, form vk by subtracting from
bk its projections on each of v1, ... , vn.
Dr Rachel Quinlan MA283 Linear Algebra 132 / 132



Orthogonal projection on a subspace

The result of this process is a basis {v1, ... , vn} whose elements satisfy

�vi , vj� = 0 for i �= j

We can adjust this basis to a orthonormal basis (consisting of orthogonal
unit vectors) by replacing each vi with its normalization v̂i .
From the Gram-Scmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an
orthogonal (or orthonormal) basis.

Now let W be a subspace of V , and let v ∈ V . The orthogonal
projection of v on W , denoted projW (v), is defined to be the unique
element u of W for which

v = u + v �,

and v � ⊥ w for all w ∈ W .
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