

Let V be a vector space over \mathbb{R} . An inner product on V is a function from $V \times V$ to \mathbb{R} that assigns an element of \mathbb{R} to every ordered pair of elements of V, and has the following properties. We write $\langle x, y \rangle$ for the inner product of x and y, and write the function as $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$.

- **1** Symmetry: $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$
- 2 Linearity in both slots (bilinearity): For all $x, y, z \in V$ and all $a, b \in \mathbb{R}$, we have $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ and $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$.
- 3 Non-negativity: $\langle x, x \rangle \ge 0$ for all $x \in V$, and $\langle x, x \rangle = 0$ only if $x = 0_V$.

- **1** The ordinary scalar product on \mathbb{R}^n .
- 2 Let C be the vector space of all continuous real-valued functions on the interval [0, 1]. The analogue of the ordinary scalar product on C is the inner product given by

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx$$
, for $f,g\in C$.

3 On the space $M_{m \times n}(\mathbb{R})$, the Frobenius inner product or trace inner product is defined by $\langle A, B \rangle = \text{trace}(A^T B)$. Note that traceATB is the sum over all positions (i, j) of the products $A_{ij}B_{ij}$. So this is closely related to the ordinary scalar product, if the matrices A and B were regarded as vectors with mn entries over \mathbb{R} .

It is possible for a single vector space to have many different inner products defined on it, and if there is any risk of ambiguity we need to specify which one we are considering. Given a real vector space and equipped with an inner product $\langle \cdot, \cdot, \rangle$, we make the following two definitions.

Definition We define the length or norm of any vector v by

$$||v|| = \sqrt{\langle v, v \rangle},$$

and we define the distance between the vectors u and v by

$$d(u, v) = ||u - v||.$$

Definition We say that vectors u and v are orthogonal (with respect to $\langle \cdot, \cdot, \rangle$) if $\langle u, v \rangle = 0$.

These definitions are consistent with "typical" geometrically motivated concepts of distance and orthogonality.

An element v of V is referred to as a unit vector if ||v|| = 1. The norm of elements of V has the property that ||cv|| = |c|z, ||v|| for any vector v and real scalar c. To see this we can note that

$$||cv|| = \sqrt{\langle cv, cv \rangle} = \sqrt{c^2 \langle v, v \rangle} = c||v||.$$

So we can adjust the norm of any element of V, while preserving its direction, by multplying it by a positive scalar.

Definition If v is a non-zero vector in an inner product space V, then

$$\hat{\mathbf{v}} := rac{1}{||\mathbf{v}||} \mathbf{v}$$

is a unit vector in the same direction as v, referred to as the *normalization* of v.

Lemma Let u and v be non-zero vectors in an inner product space V. Then it is possible to write v = au + v', where a is scalar and v' is orthogonal to u.

If v is orthogonal to u, take a = 0 and v' = v. If v is a scalar multiple of u, take au = v and v' = 0. Otherwise, to solve (for the scalar a) in the equation v = au + v' (with $u \perp v'$), take the inner product with u on both sides. Then

$$\langle u, v \rangle = a \langle u, u \rangle + 0 \Longrightarrow a = \frac{\langle u, v \rangle}{||u||^2}.$$

We conclude that $v = \frac{\langle u, v \rangle}{||u||^2} u + (v - \frac{\langle u, v \rangle}{||u||^2} u)$. We can verify directly that the two components in this expression are orthogonal to each other.

Example In \mathbb{R}^2 , write $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$.

Definition

For non-zero vectors u and v in an inner product space V, the vector $\frac{\langle u, v \rangle}{||u||^2}u$ is called the projection of v on the 1-dimensional space spanned by u. It is denoted by $\operatorname{proj}_u(v)$ and it has the property that $v - \operatorname{proj}_u(v)$ is orthogonal to u.

Lemma

 $\operatorname{proj}_{u}(v)$ is the unique element of $\langle u \rangle$ whose distance from v is minimal.

Proof Let au be a scalar multiple of u. Then

$$d(au, v)^2 = \langle au - v, au - v \rangle = a^2 \langle u, u \rangle - 2a \langle u, v \rangle + \langle v, v \rangle$$

Regarded as a quadratic function of *a*, this has a minimum when its derivative is 0, i.e. when $2a\langle u, u \rangle - 2\langle u, v \rangle = 0$, when $a = \frac{\langle u, v \rangle}{||u||^2}$.

Orthogonal Bases (the Gram-Schmidt process)

Let V be a finite-dimensional inner product space, with a given basis $\mathcal{B} = \{b_1, b_2, \dots, b_n\}.$

A basis \mathcal{B} is called orthogonal if its elements are all orthogonal to each other.

We can adjust \mathcal{B} to an orthogonal basis $\mathcal{B}' = \{v_1, \dots, v_n\}$ as follows. **1** Write $v_1 = b_1$.

2 Write
$$v_2 = b_2 - \text{proj}_{v_1}(v_2) = b_2 - \frac{\langle b_1, b_2 \rangle}{||b_1||^2} b_1$$
.

Then the pairs b_1 , b_2 and v_1 , v_2 span the same space, and $v_1 \perp v_2$. 3 Write $v_3 = b_3 - \text{proj}_{v_1}(b_3) - \text{proj}_{v_2}(b_3)$.

Then the sets v_1 , v_2 , v_3 and b_1 , b_2 , b_3 span the same space, and v_3 is orthogonal to both v_1 and v_2 .

To see this note that

$$\langle v_1, v_3 \rangle = \langle v_1, b_3 \rangle - \frac{\langle v_1, b_3 \rangle}{\langle v_1, v_1 \rangle} \langle v_1, v_1 \rangle - c \langle v_1, v_2 \rangle$$

4 Continue in this way - at the kth step, form v_k by subtracting from b_k its projections on each of v_1, \ldots, v_n . Dr Rachel Quinlan MA283 Linear Algebra

Orthogonal projection on a subspace

The result of this process is a basis $\{v_1, \dots, v_n\}$ whose elements satisfy

 $\langle v_i, v_j \rangle = 0$ for $i \neq j$

We can adjust this basis to a orthonormal basis (consisting of orthogonal unit vectors) by replacing each v_i with its normalization \hat{v}_i . From the Gram-Scmidt process, we have

Theorem

If V is a finite-dimensional inner product space, then V has an orthogonal (or orthonormal) basis.

Now let W be a subspace of V, and let $v \in V$. The orthogonal projection of v on W, denoted $\operatorname{proj}_{W}(v)$, is defined to be the unique element u of W for which

$$v = u + v'$$
,

and $v' \perp w$ for all $w \in W$.