
Lecture 20: Determinant Properties

1 The cofactor expansion method is not generally the most efficient
way to compute a determinant (it is ok in the 3× 3 case). But it
can be taken as the definition of a determinant.

2 In some special cases, the determinant is easier to compute. If A is
upper or lower triangular, then det(A) is the product of the entries
on the main diagonal of A. If A has a square k × k block A1 in the
upper left, a square (n − k)× (n − k) block in the lower right, and
only zeros in the lower left (n − k)× k region, then
det(A) = det(A1) det(A2).

3 For a pair of n × n matrices A and B, det(AB) = det(A) det(B).
This is the multplicative property of the determinant, or the
Cauchy-Binet formula. It is not obvious at all.

4 A consequence of the multuplicative property of the determinant is
that similar matrices have the same determinant and the same
characteristic polynomial.
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The characteristic polynomial of a 3× 3 matrix

Example Using cofactor expansion by the first column, we find that the

characteristic polynomial of B =



5 6 2
0 −1 −8
1 0 −2


 is

det(λI3 − B) = det



λ− 5 −6 −2
0 λ+ 1 8
−1 0 λ+ 2




= (λ− 5) ((λ+ 1)(λ+ 2)− 0(8)) + (−1) ((−6)(8)− (λ+ 1)(

= (λ− 5)(λ2 + 3λ+ 2)− (2λ− 46)

= λ3 − 2λ2 − 15λ+ 36

= (λ− 3)(λ2 + λ− 12)

= (λ− 3)(λ+ 4)(λ− 3)

= (λ− 3)2(λ+ 4)
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Algebraic and Geometric Multiplicity

The eigenvalues of B are 3 (occurring twice as a root of the characteristic
polynomial), and −4 (occurring once). We say that 3 has algebraic
multplicity 2 and −4 has algebraic multiplicity 1 as an eigenvalue of B .
The geometric multplicity of each eigenvalue is the dimension of its
corresponding eigenspace.

3I3 − B =



−2 −6 −2
0 4 8

−1 0 5




The RREF of this matrix is



1 0 −5
0 1 2
0 0 0


 and the nullspace consists of all

vectors




5t
−2t

t


, where t ∈ R. This is the eigenspace of B corresponding

to λ = 3. It has dimension 1, so 3 has geometric multiplicity 1 as an
eigenvector of B.
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Algebraic and Geometric Multiplicity

Theorem The geometric multplicity of an eigenvalue is at most equal to
its algebraic multiplicity.

Proof: Suppose that µ has geometric multiplicity k as an eigenvalue of
the square matrix A ∈ Mn(R), and let {v1, ... , vk} be a basis for the
µ-eigenspace of A. Extend this to a basis B of Rn, and let P be the
matrix whose columns are the elements of B. Then the first k columns of
P−1AP have µ in the diagonal position and zeros elsewhere. It follows
that λ− µ occurs at least k times as a factor of det(λIn − P−1AP).

Corollary A matrix is diagonalizable if and only if the geometric
multiplicity of each of its eigenvalues is equal to the algebraic multiplicity.
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Chapter 4: Inner Products and Orthogonality

In R2, the scalar (or dot) product of the vectors x =
�x1
x2

�
and y =

�y1
y2

�
is

given by
x · y = x1y1 + x2y2 = xT y = yT x = y · x .

We can interpret the length ||x || of the vector x as the length of the
directed line segment from the origin to (x1, x2), which by the Theorem

of Pythagoras is
�
x21 + x22 or

√
x · x . Once we have a concept of length

of a vector, we can define the distance d(x , y) between two vectors x
and y as the length of ther difference: d(x , y) = ||x − y ||.
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Chapter 4: Inner Products and Orthogonality

In R2, the scalar (or dot) product of the vectors x =
�x1
x2

�
and y =

�y1
y2

�
is

given by
x · y = x1y1 + x2y2 = xT y = yT x = y · x .

Similarly, from the Cosine Rule we can observe that
x · y = ||x || ||y || cos θ, where θ is the angle between the directed line
segments representing x and y . In particular, x is orthogonal to y (or
x ⊥ y) if and only if x · y = 0.
So the scalar product encodes much of the geometry of R2, and it also
provides a mechanism for defining concepts of length, distance and
orthogonality on real vector spaces that do not necessarily have an
obvious geometric structure.
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Real Inner Products

Let V be a vector space over R. An inner product on V is a function
from V × V to R that assigns an element of R to every ordered pair of
elements of V , and has the following properties. We write �x , y� for the
inner product of x and y , and write the function as �·, ·� : V × V → R.

1 Symmetry: �x , y� = �y , x� for all x , y ∈ V

2 Linearity in both slots (bilinearity): For all x , y , z ∈ V and all
a, b ∈ R, we have �ax + by , z� = a�x , z�+ b�y , z� and
�x , ay + bz� = a�x , y�+ b�x , z�.

3 Non-negativity: �x , x� ≥ 0 for all x ∈ V , and �x , x� = 0 only if
x = 0V .

Dr Rachel Quinlan MA283 Linear Algebra 124 / 125



Examples of inner products

1 The ordinary scalar product on Rn.

2 Let C be the vector space of all continuous real-valued functions on
the interval [0, 1]. The analogue of the ordinary scalar product on C
is the inner product given by

�f , g� =
� 1

0
f (x)g(x) dx , for f , g ∈ C .

3 On the space Mm×n(R), the Frobenius inner product or trace inner
product is defined by �A,B� = trace(ATB). Note that traceATB is
the sum over all positions (i , j) of the products AijBij . So this is
closely related to the ordinary scalar product, if the matrices A and
B were regarded as vectors with mn entries over R.

It is possible for a single vector space to have many different inner
products defined on it, and if there is any risk of ambiguity we need to
specify which one we are considering.
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