Theorem If v_1, \ldots, v_k are eigenvectors of $A \in M_n(\mathbb{F})$, corresponding to different eigenvalues, then $\{v_1, \ldots, v_k\}$ is a linearly independent set.

The following consequence of the Theorem suggests that we may have some chance of being able to find the eigenvalues of a $n \times n$ matrix, or at least that there are not too many of them.

Corollary Let $A \in M_n(\mathbb{F})$. Then A has at most n distinct eigenvalues in \mathbb{F} .

Proof If A has k distinct eigenvalues, with corresponding eigenvectors v_1, \ldots, v_k in \mathbb{F}^n , then k cannot exceed the dimension of \mathbb{F}^n , since $\{v_1, \ldots, v_k\}$ is a linearly independent set in \mathbb{F}^n . Hence $k \leq n$.

Corollary If $A \in M_n(\mathbb{F})$ has *n* distinct eigenvalues in \mathbb{F} , then *A* is diagonalizable in $M_n(\mathbb{F})$.

For $A \in M_n(\mathbb{F})$, it does not always happen that \mathbb{F}^n has a basis consisting of eigenvectors of A.

Examples

- 1 To define an eigenvector of a linear transformation or of a square matrix.
- 2 To know that eigenvectors corresponding to different eigenvalues are linearly independent.
- 3 And that this means a $n \times n$ matrix can have at most n distinct eigenvalues
- 4 and that it is diagonalizable if it does have *n* distinct eigenvalues.

Section 3.5 The characteristic polynomial

Example Find a matrix P with
$$P^{-1}AP$$
 diagonal, where $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$

To answer this, we need to find two linearly independent eigenvectors of A. These are non-zero solutions of

 $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \implies \begin{bmatrix} 2x + 2y \\ x + 3y \end{bmatrix} = \lambda \begin{bmatrix} x \\ \lambda y \end{bmatrix} \implies \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} (\lambda - 2)x - 2y \\ -x + (\lambda - 3)y \end{bmatrix} \implies \begin{bmatrix} \lambda - 2 \\ -1 \end{bmatrix} \begin{bmatrix} x \\ \lambda - 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ So we are looking for non-zero solutions $\begin{bmatrix} x \\ y \end{bmatrix}$ of the system $\begin{bmatrix} \lambda - 2 & -2 \\ -1 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

These can occur only if the coefficient matrix is non-invertible. If it is invertible, the only solution is x = y = 0.

A 2×2 matrix is non-invertible if and only if its determinant is 0.

$$\det \begin{bmatrix} \lambda - 2 & -2 \\ -1 & \lambda - 3 \end{bmatrix} = (\lambda - 2)(\lambda - 3) - (-2)(-1) = \lambda^2 - 5\lambda + 4.$$

The Characteristic Polynomial of a 2×2 matrix

The characteristic polynomial of A is

$$\det(\lambda I - A) = \lambda^2 - 5\lambda + 4 = (\lambda - 4)(\lambda - 1).$$

The eigenvalues of A are the solutions of the characteristic equation $det(\lambda I - A) = 0$, 1 and 4. The eigenspace of A corresponding to $\lambda = 1$ is the set of all solutions of the system

$$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1 \begin{bmatrix} x \\ y \end{bmatrix} \Longrightarrow \begin{bmatrix} 1-2 & -2 \\ -1 & 1-3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is the nullspace of the matrix $1I - A = \begin{bmatrix} -1 & -2 \\ -1 & -1 \end{bmatrix}$, which is

$$\left\{ \begin{bmatrix} -2t \\ t \end{bmatrix}$$
 , $t \in \mathbb{R} \right\}$.

An eigenvector of A for $\lambda = 1$ is any non-zero element of this space, for example $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Dr Rachel Quinlan