Example Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $v \rightarrow A v$, where

$$
A=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]
$$

Let \mathcal{B} be the (ordered) basis of \mathbb{R}^{3} with elements
$b_{1}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right], b_{2}=\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right], b_{3}=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
What is the matrix A^{\prime} of T with respect to \mathcal{B} ?
The columns of A^{\prime} have the \mathcal{B}-coordinates of $T\left(b_{1}\right), T\left(b_{2}\right)$ and $T\left(b_{3}\right)$.

$$
\begin{aligned}
T\left(b_{1}\right)=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right] & =\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right]=2 b_{1} \Longrightarrow\left[T\left(b_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
T\left(b_{2}\right)=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right] & =\left[\begin{array}{r}
-6 \\
3 \\
0
\end{array}\right]=-3 b_{2} \Longrightarrow\left[T\left(b_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{r}
0 \\
-3 \\
0
\end{array}\right] \\
T\left(b_{3}\right)=\left[\begin{array}{rrr}
-2 & 2 & 1 \\
4 & 5 & -1 \\
-4 & -8 & 3
\end{array}\right]\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right] & =\left[\begin{array}{r}
0 \\
-7 \\
14
\end{array}\right]=7 b_{3} \Longrightarrow\left[T\left(b_{3}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0 \\
7
\end{array}\right]
\end{aligned}
$$

The matrix of T with respect to \mathcal{B}^{\prime} is

$$
A^{\prime}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

This means: for any $v \in \mathbb{R}^{3}$,

$$
[T(v)]_{\mathcal{B}}=A^{\prime}[v]_{\mathcal{B}} .
$$

Change of basis again

For this example for now, we consider the relationship between A and A^{\prime} from another viewpoint. Let P be the matrix with the basis vectors from \mathcal{B} as columns. From Section 3.1, we know that P^{-1} is the change of basis matrix from the standard basis to \mathcal{B}. This means that for any element v of \mathbb{R}^{3}, its \mathcal{B}-coordinate are given by the matrix-vector product

$$
[v]_{\mathcal{B}}=P^{-1} v .
$$

Equivalently, if we start with the \mathcal{B}-coordinates, then the standard coordinates of v are given by

$$
v=P[v]_{\mathcal{B}} .
$$

So P itself is the change of basis matrix from \mathcal{B} to the standard basis.

Suppose we only knew about A (and had not already calculated A^{\prime}). We have a basis \mathcal{B} whose columns form the matrix P. To figure out the matrix of T with respect to \mathcal{B} :
1 Start with an element of \mathbb{R}^{3}, written in its \mathcal{B}-coordinates: $[v]_{\mathcal{B}}$
2 Convert the vector to its standard coordinates (so that we can apply T by multiplying by A): this means taking the product $P[v]_{\mathcal{B}}$
3 Now apply T : this means taking the product $A P[v]_{\mathcal{B}}$. This vector has the standard coordinates of $T(v)$.
4 To convert this to \mathcal{B}-coordinates, apply the change of basis matrix from standard to \mathcal{B}, which is P^{-1} : this means taking the product $P^{-1} A P[v]_{\mathcal{B}}$. This vector has the \mathcal{B}-coordinates of $T(v)$.
5 Conclusion: For any element v of \mathbb{R}^{3}, the \mathcal{B}-coordinates of $T(v)$ are given by $\left(P^{-1} A P\right)[v]_{\mathcal{B}}$.

Definition Let \mathbb{F} be a field. Two matrices A and B in $M_{n}(\mathbb{F})$ are similar if there exists an invertible matrix $P \in M_{n}(\mathbb{F})$ for which $B=P^{-1} A P$.

Notes

1 Two distinct matrices in $M_{n}(\mathbb{F})$ are similar if and only if they represent the same linear transformation from \mathbb{F}^{n} to \mathbb{F}^{n}, with respect to different bases.

2 It is not generally easy to tell by glancing at a pair of square matrices whether they are similar or not, but there is one feature that is easy to check. The trace of a square matrix is the sum of the entries on the main diagonal, from top left to bottom right. If two matrices are similar, they have the same trace.
3 Similar matrices also have some other features in common, such as having the same determinant (more on that later).

Lemma Let $A, B \in M_{n}(\mathbb{F})$. Then $\operatorname{trace}(A B)=\operatorname{trace}(B A)$.
Consequence: For any square matrix A and any invertible matrix P, both in $M_{n}(\mathbb{F})$,

$$
\operatorname{trace}\left(P^{-1} A P\right)=\operatorname{trace}(A P) P^{-1}=\operatorname{trace} A
$$

so similar matrices always have the same trace.

In the example, we found that the 3×3 matrix A is similar to the diagonal matrix $A^{\prime}=\operatorname{diag}(2 .-3,7)$. We say that A is diagonalizable, which means that it is similar to a diagonal matrix.

If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is left multiplication by A, then A^{\prime} is the matrix of T with respect to the basis $\mathcal{B}=\left(b_{1}, b_{2}, b_{3}\right)$, and the basis elements b_{1}, b_{2}, b_{3} are the columns of the matrix P for which $P^{-1} A P=A^{\prime}$.

1 From the diagonal form of A^{\prime} we have $T\left(b_{1}\right)=2 b_{1}, T\left(b_{2}\right)=-3 b_{2}$ and $T\left(b_{3}\right)=7 b_{3}$. This means that each of the basis elements b_{1}, b_{2}, b_{3} is mapped by T to a scalar multiple of itself - each of them is an eigenvector of T.
2 We can rearrange the version $P^{-1} A P=A^{\prime}$ to $A P=P A^{\prime}$. Bearing in mind that $P=\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]$ and that $A^{\prime}=\operatorname{diag}(2,-3,7)$, this is saying that
$A\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{ccc}\mid & \mid & \mid \\ b_{1} & b_{2} & b_{3} \\ \mid & \mid & \mid\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}\mid & \mid & \mid \\ A b_{1} & A b_{2} & A b_{3} \\ \mid & \mid & \mid\end{array}\right]$
This means that $A b_{1}=2 b_{1}, A b_{2}=-3 b_{2}$ and $A b_{3}=7 b_{3}$, so that $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of \mathbb{R}^{3} consisting of eigenvectors of A.

Definition Let $T: V \rightarrow V$ be a linear transformation from a vector space V to itself. An eigenvector of T is a non-zero element v of V for which $T(v)=\lambda v$ for some scalar λ (called the eigenvalue of T to which v corresponds).
In this situation, T can be represented by a diagonal matrix if and only if V has a basis consisting of eigenvectors of T.

Definition (Matrix Version). Let $A \in M_{n}(\mathbb{F})$. An eigenvector of A is a non-zero vector $v \in \mathbb{F}^{n}$ for which $A v=\lambda v$ for a scalar λ (called the eigenvalue of A to which v corresponds).
The matrix A is diagonalizable (similar to a diagonal matrix) if and only if there is a basis of \mathbb{F}^{n} consisting of eigenvectors of A.

