
where we write Eij for the matrix with 1 in the (i, j)-position and zero in all other positions. From
the above, we see that {E12 −E21,E13 −E31,E23 −E32} is a spanning set of V . This set is also linearly
independent: if

a(E12 − E21) + b(E13 − E31) + c(E23 − E32) = 03×3

for some real scalars a,b, c, then by looking at the entries in the (1, 2), (1, 3) and (2, 3) positions,
we observe that a = b = c = 0. We conclude that {E12 −E21,E13 −E31,E23 −E32} is a basis of V and
that dimV = 3.

Exercise 2.2.10. What is the dimension of the space of skew-symmetric matrices in Mn(R)? What about
the space of symmetric matrices?

2.3 More on Bases and Dimension

In this section we note a few more properties of bases of finite dimensional vector spaces. We start
with a connection to matrices. We let V be a vector space of dimension n over a field F. Recall
that this means that every basis of V has n elements, and a basis of V is a linearly independent
spanning set of B. This means that it is both a minimal spanning set of V and a maximal linearly
independent subset of V .

Lemma 2.3.1. Every linearly independent subset of V with n elements is a basis of V .

Proof. Let L = {v1, . . . , vn} be a linearly independent subset of V . If L is not a spanning set of
V , then there is some v ∈ V with v �∈ �L�. It follows that the set L � = {v1, . . . , vn, v} is linearly
independent in V , contrary to Theorem 2.2.6.

Lemma 2.3.2. Every spanning set of V with n elements is a basis of V .

Proof. Let V be a spanning set of V with n elements. If V is not linearly independent, then V
contains a proper subset that spans V but has fewer than n elements, contrary to Theorem 2.2.6.

Lemma 2.3.3. If L is a linearly independent subset of V , then L can be extended to a basis of V .

Proof. Write L = {v1, . . . , vk}. Then k � n by Theorem 2.2.6. If k = n, then L spans V by Lemma
2.3.1, and L is a basis of V . If k < n, then L is not a spaning set of V , and there is an element
vk+1 ∈ V with vk+1 �∈ �L�. Then {v1, . . . , vk, vk+1} is linearly independent. We may continue in
this way to add elements from outside the existing span, until we reach a basis of V after n − k
steps.

For any field F, Fn denotes the space of all column vectors with n entries. The standard basis
of Fn is {e1, . . . , en}, where ei has 1 in position i and 0 in all other positions. That {e1, . . . , en} is
linearly independent and spans Fn can be confirmed from the relevant definitions.

Theorem 2.3.4. Let B = {v1, . . . , vn} be any set of n vectors in Fn. Then B is a basis of Fn if and only if
the matrix A whose columns are v1, . . . , vn has an inverse in Mn(F).

Proof. Suppose that A has an inverse of in Mn(F). Then AA−1 = In, and Aw1 = e1, where w1 is
the first column of A−1. It follows that e1 is a linear combination of v1, . . . , vn. Similarly each ei is
in the linear span of {v1, . . . , vn}, and so {v1, . . . , vn} is a spanning set of Fn. Hence it is a basis of
Fn by Lemma 2.3.1.

On the other hand, suppose that B is a basis of Fn. Then e1 is a linear combination of the
columns of B, and so e1 = Bw1, for some w1 ∈ Fn. Similarly ei = Bwi, for i = 2, . . . ,n. It follows
that AW = In, where W is the matrix in Mn(F) whose columns are w1, . . . ,wn, and hence A has
an inverse in Mn(F).

We finish (for now) on this topic by noting that Fn is the generic and even (sort of) the only
vector space of dimension n over F. Suppose that V is a F-vector space with dimV = n, and let
B = {v1, . . . , vn} be a basis of V over F. For every element v ∈ V , there is a unique expression for v
as a linear combination of the elements of B:

v = a1v1 + · · ·+ anvn.
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We refer to a1, . . . ,an as the coordinates of v with respect to the basis B. With this association, we
can consider v to be represented by the column vector in Fn whose entries are a1, . . . ,an. This
association defines a bijective correspondence between V and Fn, and means that we can identify
these two vector spaces as being essentially the same. Different bases of V correspond to different
identifications of V with Fn, and we will explore the realtionships between these in Chapter 3.
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