
Section 1.4: Connections to Matrix Algebra

Elementary row operations may themselves be interpreted as matrix
multiplication exercises.

We write Im for the m ×m identity matrix

We write Ei ,j for the matrix that has 1 in the (i , j)-position and
zeros everywhere else.

Theorem 11

Let A be a m×m matrix. Then elementary row operations on A amount
to multiplying A on the left by m ×m matrices, as follows:

1 Mutiplying Row i by the non-zero scalar α is equivalent to
multiplying A on the left by the matrix Im + (α− 1)Ei ,i .

2 Switching Rows i and k amounts to multiplying A on the left by the
matrix Im + Ei ,k + Ek,i − Ei ,i − Ek,i .

3 Adding α× Row i to Row k amounts to multiplying A on the left by
the matrix Im + αEk,i .
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Elementary Row Operations as Matrix Multiplication

Matrices of the three types described in Theorem 11 are sometimes
referred to as elementary matrices. They are always invertible, and their
inverses are also elementary matrices. The statement that every matrix
can be reduced to RREF through a sequence of EROs is equivalent to
saying that for every matrix A with m rows, there exists a m ×m matrix
B , which is a product of elementary matrices, with the property that BA
is in RREF.

Exercise 12

Write down the inverse of an elementary matrix of each of the three
types, and show that it is also an elementary matrix.
(Hint: Think about how to reverse an elementary row operation, with
another elementary row operation).

Exercise 13

Prove that every invertible matrix in Mn(R) is a product of elementary
matrices.
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Using Gauss-Jordan elimination to calculate matrix inverses

Suppose that A ∈ Mn(F), for some field F. If A is invertible, let
v1, v2, ... , vn be the columns of its inverse. Then

AA−1 = A




| | ... |
v1 v2 ... vn
| | ... |


 = A




| | ... |
Av1 Av2 ... Avn
| | ... |


 = In.

For each i , Avi is the ith column of the identity matrix, which has 1 in
position i and zeros elsewhere. This means that vi is the solution of the
linear system Avi = ei , where ei is column i of the identity matrix, and
the variables are the unknown entries of vi .
We need to this for each column, but we can combine this into a single
process by writing e1, e2, ... , en as n distinct columns in the “right hand
side” of a n × 2n augmented matrix.
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Example of inverse calculation

Example Find A−1 if A =




3 4 −1
1 0 3
2 5 −4


.

To calculate A−1, We apply Gauss-Jordan elimination to the 3× 6 matrix
below

A� =




3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1


 −→




1 0 0 3
2 −11

10 −6
5

0 1 0 −1 1 1
0 0 1 −1

2
7
10

2
5




We conclude

A−1 =




3
2 −11

10 −6
5

−1 1 1
−1

2
7
10

2
5


 .
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Chapter 2: Vector Spaces and Linear Transformations

We think of the real number line R as begin “1-dimensional”, and of R2

as being “2-dimensional” and of R3 as being 3-dimensional. These terms
are used not only in mathematics but in everyday language aswell. In
linear algebra, they mean something quite precise.
To say that R is 1-dimensional means that we only need one real number
to specify the position of a point in R.
For a point in R2, we need to specify two real numbers, for example its x
and y coordinates - but these are not the only options. We could use its
distance from the origin, and the angle that the line segment joining it to
the orgin makes with the positive X -axis. We could specify its position
relative to another pair of lines, instead of the two coordinate axes.
Another example of a vector space that is 2-dimensional is the space V
consisting of all symmetric 2× 2 matrices in M2(R) with trace zero. A
symmetric matrix is one that is equal to its transpose. Trace zero means
the sum of the entries on the main diagonal is zero.
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Subspaces

Definition Let V be a vector space over a field F. A subset U of V is a
subspace (or vector subspace) of V if U is itself a vector space over F,
under the addition and scalar multiplication operations of V .
Two things need to be checked to confirm that a subset U of a vector
space V is a subspace:

1 That U is closed under the addition in V : that u1 + u2 ∈ U
whenever u1 ∈ U and u2 ∈ U;

2 That U is closed under scalar multiplication: that αu ∈ U whenever
u ∈ U and α ∈ F.

Examples

1 Let Q[x ] be the set of all polynomials with rational coefficients.
Within Q[x ], let P2 be the subset consisting of all polynomials of
degree at most 2. This means that
P2 = {a2x2 + a1x + a0 : a0, a1, a2 ∈ Q}. Then P2 is a (vector)
subspace of Q[x ]. If f (x) and g(x) are rational polynomials of
degree at most 2, then so also is f (x) + g(x). If f (x) is a rational
polynomial of degree at least 2, then so is αf (x) for any α ∈ Q.
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