
Lecture 7: Possible outcomes of solving linear systems

1 The system may be inconsistent. This happens if a REF obtained
from the augmented matrix has a leading 1 in its rightmost column.

2 The system may be consistent. Then one of the following occurs :

1 There may be a unique solution. This happens if all variables are
leading variables. In the case the RREF has the following form :




1 0 0 ... 0 ∗
0 1 0 ... 0 ∗
0 0 1 ... 0 ∗
...

...
...

. . .
...

...
0 0 0 ... 1 ∗




with maybe some rows full of zeros at the bottom. The unique
solution can be read from the rightmost column.

2 There may be infinitely many solutions. This happens if the system is
consistent but at least one of the variables is free.
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Example (not in the lecture notes)

1. Solve the following linear system.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1

Step 1: Reduce the augmented matrix to RREF.



1 3 5 −9 5
3 −1 −5 13 5
2 −3 −8 18 1


 →



1 0 −1 3 2
0 1 2 −4 1
0 0 0 0 0




Step 2: Identify leading variables (x1, x2) and free variablse x3, x4, and
write the general solution.

(x1, x2, x3, x4) = (2 + t − 3s, 1− 2t + 4s, t, s) : t, s ∈ R
= (2, 1, 0, 0) + t(1,−2, 1, 0) + s(−3, 4, 0, 1) : t, s ∈ R.
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Example (Part 2)

2. Solve the following linear system.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1
2x1 − x2 − 3x3 + 4x4 = 1

We must describe all simultaneous solutions of the first three equations
that also satisfy the fourth. A solution of the first three has the form

(x1, x2, x3, x4) = (2 + t − 3s, 1− 2t + 4s, t, s),

for real numbers t and s. Insert this information into the fourth equation:

2(2+t−3s)−(1−2t+4s)−3t+4s = 1 =⇒ 3+t−6s = 1 =⇒ t = −2+6s.

The parameters t and s are no longer independently free.

(x1, x2, x3, x4) = (2 + (−2 + 6s)− 3s, 1− 2(−2 + 6s) + 4s,−2 + 6s, s)

= (3s, 5− 8s,−2 + 6s, s) : s ∈ R
= (0, 5,−2, 0) + s(3,−8, 6, 1) : s ∈ R.
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Example (Part 3)

3. Solve the following linear system.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1
2x1 − x2 − 3x3 + 4x4 = 1
3x1 − 2x2 − 2x3 − 5x4 = 10

Simultaneous solutions of the first four equations have the form

(x1, x2, x3, x4) = (3s, 5− 8s,−2 + 6s, s) : s ∈ R.

Check for values of s for which this also satisfies Equation 5:

3(3s)− 2(5− 8s)− 2(−2 + 6s)− 5s = −6 + 8s = 10 =⇒ 8s = 6, s = 2.

Unique solution: (x1, x2, x3, x4) = (6,−11, 10, 2).
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Example (Part 4)

3. Show that the following linear system is inconsistent.

x1 + 3x2 + 5x3 − 9x4 = 5
3x1 − x2 − 5x3 + 13x4 = 5
2x1 − 3x2 − 8x3 + 18x4 = 1
2x1 − x2 − 3x3 + 4x4 = 1
3x1 + 2x2 + 2x3 − 5x4 = 3

Simultaneous solutions of the first four equations have the form

(x1, x2, x3, x4) = (3s, 5− 8s,−2 + 6s, s) : s ∈ R.

Check for values of s for which this also satisfies Equation 5:

3(3s) + 2(5− 8s) + 2(−2 + 6s)− 5s = 6 �= 3.

No simultaneous solution of the first four equations also satisfies the last
one, the system is inconsistent.
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Section 1.4: Connections to Matrix Algebra

Elementary row operations may themselves be interpreted as matrix
multiplication exercises.

We write Im for the m ×m identity matrix

We write Ei ,j for the matrix that has 1 in the (i , j)-position and
zeros everywhere else.

Theorem 11

Let A be a m×m matrix. Then elementary row operations on A amount
to multiplying A on the left by m ×m matrices, as follows:

1 Mutiplying Row i by the non-zero scalar α is equivalent to
multiplying A on the left by the matrix Im + (α− 1)Ei ,i .

2 Switching Rows i and k amounts to multiplying A on the left by the
matrix Im + Ei ,k + Ek,i − Ei ,i − Ek,i .

3 Adding α× Row i to Row k amounts to multiplying A on the left by
the matrix Im + αEk,i .
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Elementary Row Operations as Matrix Multiplication

Matrices of the three types described in Theorem 11 are sometimes
referred to as elementary matrices. They are always invertible, and their
inverses are also elementary matrices. The statement that every matrix
can be reduced to RREF through a sequence of EROs is equivalent to
saying that for every matrix A with m rows, there exists a m ×m matrix
B , which is a product of elementary matrices, with the property that BA
is in RREF.

Exercise 12

Write down the inverse of an elementary matrix of each of the three
types, and show that it is also an elementary matrix.
(Hint: Think about how to reverse an elementary row operation, with
another elementary row operation).

Exercise 13

Prove that every invertible matrix in Mn(R) is a product of elementary
matrices.
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Using Gauss-Jordan elimination to calculate matrix inverses

Suppose that A ∈ Mn(F), for some field F. If A is invertible, let
v1, v2, ... , vn be the columns of its inverse. Then

AA−1 = A




| | ... |
v1 v2 ... vn
| | ... |


 = A




| | ... |
Av1 Av2 ... Avn
| | ... |


 = In.

For each i , Avi is the ith column of the identity matrix, which has 1 in
position i and zeros elsewhere. This means that vi is the solution of the
linear system Avi = ei , where ei is column i of the identity matrix, and
the variables are the unknown entries of vi .
We need to this for each column, but we can combine this into a single
process by writing e1, e2, ... , en as n distinct columns in the “right hand
side” of a n × 2n augmented matrix.
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Example of inverse calculation

Example Find A−1 if A =




3 4 −1
1 0 3
2 5 −4


.

To calculate A−1, We apply Gauss-Jordan elimination to the 3× 6 matrix
below

A� =




3 4 −1 1 0 0
1 0 3 0 1 0
2 5 −4 0 0 1


 −→




1 0 0 3
2 −11

10 −6
5

0 1 0 −1 1 1
0 0 1 −1

2
7
10

2
5




We conclude

A−1 =




3
2 −11

10 −6
5

−1 1 1
−1

2
7
10

2
5


 .
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