Themes for Chapter 3

- It is useful to be able to move between different bases for a given vector space;
- One basis may be far better than another for describing a paricular linear transformation - the standard basis is not always the most useful one;
- Everything can be interpreted in terms of matrix algebra, although the setup takes some work.

The dimension of the space \mathbb{F}^n is n - the standard basis consists of the column vectors e_1, \ldots, e_n , where e_i has 1 in position i and zeros in all other positions.

For example, in \mathbb{R}^3 ,

$$e_1=\left[egin{array}{c}1\\0\\0\end{array}
ight]$$
 , $e_2=\left[egin{array}{c}0\\1\\0\end{array}
ight]$, $e_3=\left[egin{array}{c}0\\0\\1\end{array}
ight]$,

and the standard basis $\mathcal{E} = \{e_1, e_2, e_3\}$. How can we recognize a basis of \mathbb{F}^n ? It should have *n* elements, which should be column vectors in \mathbb{F}^n . But some sets of three column vectors in \mathbb{R}^3 are bases of \mathbb{R}^3 and some are not. How do we know? Theorem Let $\mathcal{B} = \{v_1, ..., v_n\}$ be any set of *n* vectors in \mathbb{F}^n . Then \mathcal{B} is a basis of \mathbb{F}^n if and only if the matrix A whose columns are $v_1, ..., v_n$ has an inverse in $M_n(\mathbb{F})$.

 \leftarrow Suppose that A has an inverse of in $M_n(\mathbb{F})$. Then $AA^{-1} = I_n$, and $Aw_1 = e_1$, where w_1 is the first column of A^{-1} . It follows that e_1 is a linear combination of v_1, \ldots, v_n . Similarly each e_i is in the linear span of $\{v_1, \ldots, v_n\}$, and so $\{v_1, \ldots, v_n\}$ is a spanning set of \mathbb{F}^n .

 \implies Suppose that \mathcal{B} is a basis of \mathbb{F}_n . Then e_1 is a linear combination of the columns of A, and so $e_1 = Aw_1$, for some $w_1 \in \mathbb{F}^n$. Similarly $e_i = Aw_i$, for i = 2, ..., n. It follows that $AW = I_n$, where W is the matrix in $M_n(\mathbb{F})$ whose columns are $w_1, ..., w_n$.

Suppose we have another basis $\mathcal{B} = \{b_1, b_2, b_3\}$ of R^3 (besides the standard basis), where

$$b_1=\left[egin{array}{c}1\\1\\-1\end{array}
ight]$$
 , $b_2=\left[egin{array}{c}-1\\-1\\2\end{array}
ight]$, $b_3=\left[egin{array}{c}1\\-1\\0\end{array}
ight]$.

Question: Suppose we have some vector in \mathbb{R}^3 , for example $v = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

What are the coordinates of v with respect to \mathcal{B} ?

Another Question: Why would we want to know this?

If we knew how to write e_1 , e_2 and e_3 as a linear combination of b_1 , b_2 , b_3 , we could do the same for v (or any vector). The \mathcal{B} -coordinates of e_1 are the values of x, y, z in the unique solution of

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ -1 & 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ or } B\begin{bmatrix} x \\ y \\ z \end{bmatrix} = e_1.$$

The corresponding values are given by

$$\left[\begin{array}{c} x\\ y\\ z\end{array}\right] = B^{-1} \left[\begin{array}{c} 1\\ 0\\ 0\end{array}\right],$$

which means they are the entries of Column 1 of B^{-1} . In the same way, the \mathcal{B} -coordinates of e_1 and e_3 are given by Columns 2 and 3 of B^{-1} .

For our example:

$$B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ -1 & 2 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1/2 & 1/2 & 1 \\ 1/2 & -1/2 & 0 \end{bmatrix}$$

Looking at (for example) Column 2 of B^{-1} we can confirm that its entries are the \mathcal{B} -coordinates of e_2 .

The change of basis matrix

Now for the \mathcal{B} -coordinates of $v = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$. We write $[v]_{\mathcal{B}}$ for the column whose entries are the \mathcal{B} -coordinates of v. We can now achieve this through a matrix-vector product.

$$v = 2e_{1} + 1e_{2} + 3e_{3} \Longrightarrow [v]_{\mathcal{B}} = 2[e_{1}]_{\mathcal{B}} + 1[e_{2}]_{\mathcal{B}} + 3[e_{3}]_{\mathcal{B}}$$

$$= \begin{bmatrix} [e_{1}]_{\mathcal{B}} & [e_{2}]_{\mathcal{B}} & [e_{3}]_{\mathcal{B}} \end{bmatrix} \begin{bmatrix} 2\\1\\3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1\\1/2 & 1/2 & 1\\1/2 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \begin{bmatrix} 6\\9/2\\1/2 \end{bmatrix}$$

Conclusion: $v = 6b_1 + \frac{9}{2}b_2 + \frac{1}{2}b_3$.

Exercise: Confirm this conclusion by direct calculation.

To find the \mathcal{B} -coordinates of *any* vector v in \mathbb{R}^3 , what we need to do is multiply v on the left by the *change of basis* matrix from the standard basis to \mathcal{B} . This is the inverse of the matrix whose columns are the elements of \mathcal{B} (written in the standard basis).

Learning outcomes for Section 3.1

- 1 How to recognize when a set of *n* column vectors in \mathbb{R}^n (or \mathbb{F}^n) forms a basis.
- 2 To recognize that elements of \mathbb{R}^n (or \mathbb{F}^n) have different coordinates with respect to different bases.
- 3 To use the change of basis matrix to write the coordinates of any vector in \mathbb{F}^n with respect to a given basis.