
Chapter 3: Linear transformations, eigenvectors, similarity

Themes for Chapter 3

It is useful to be able to move between different bases for a given
vector space;

One basis may be far better than another for describing a paricular
linear transformation - the standard basis is not always the most
useful one;

Everything can be interpreted in terms of matrix algebra, although
the setup takes some work.
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How to recognize a basis of Fn

The dimension of the space Fn is n - the standard basis consists of the
column vectors e1, ... , en, where ei has 1 in position i and zeros in all
other positions.
For example, in R3,

e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1


 ,

and the standard basis E = {e1, e2, e3}.
How can we recognize a basis of Fn? It should have n elements, which
should be column vectors in Fn. But some sets of three column vectors
in R3 are bases of R3 and some are not. How do we know?
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Bases of Fn

Theorem Let B = {v1, ... , vn} be any set of n vectors in Fn. Then B is a
basis of Fn if and only if the matrix A whose columns are v1, ... , vn has
an inverse in Mn(F).
⇐= Suppose that A has an inverse of in Mn(F). Then AA−1 = In, and
Aw1 = e1, where w1 is the first column of A−1. It follows that e1 is a
linear combination of v1, ... , vn. Similarly each ei is in the linear span of
{v1, ... , vn}, and so {v1, ... , vn} is a spanning set of Fn.

=⇒ Suppose that B is a basis of Fn. Then e1 is a linear combination of
the columns of A, and so e1 = Aw1, for some w1 ∈ Fn. Similarly
ei = Awi , for i = 2, ... , n. It follows that AW = In, where W is the
matrix in Mn(F) whose columns are w1, ... ,wn.
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Moving between two bases

Suppose we have another basis B = {b1, b2, b3} of R3 (besides the
standard basis), where

b1 =




1
1

−1


 , b2 =




−1
−1
2


 , b3 =




1
−1
0


 .

Question: Suppose we have some vector in R3, for example v =




2
1
3


.

What are the coordinates of v with respect to B?

Another Question: Why would we want to know this?
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How to write the B-coordinates of v?

If we knew how to write e1, e2 and e3 as a linear combination of
b1, b2, b3, we could do the same for v (or any vector).
The B-coordinates of e1 are the values of x , y , z in the unique solution of




1 −1 1
1 −1 −1

−1 2 0






x
y
z


 =




1
0
0


 , or B




x
y
z


 = e1.

The corresponding values are given by




x
y
z


 = B−1




1
0
0


 ,

which means they are the entries of Column 1 of B−1. In the same way,
the B-coordinates of e1 and e3 are given by Columns 2 and 3 of B−1.
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The matrices B and B−1

For our example:

B =




1 −1 1
1 −1 −1

−1 2 0


 , B−1 =




1 1 1
1/2 1/2 1
1/2 −1/2 0




Looking at (for example) Column 2 of B−1 we can confirm that its
entries are the B-coordinates of e2.
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The change of basis matrix

Now for the B-coordinates of v =




2
1
3


. We write [v ]B for the column

whose entries are the B-coordinates of v . We can now achieve this
through a matrix-vector product.

v = 2e1 + 1e2 + 3e3 =⇒ [v ]B = 2[e1]B + 1[e2]B + 3[e3]B

=


 [e1]B [e2]B [e3]B






2
1
3




=




1 1 1
1/2 1/2 1
1/2 −1/2 0






2
1
3


 =




6
9/2
1/2




Conclusion: v = 6b1 +
9
2b2 +

1
2b3.

Exercise: Confirm this conclusion by direct calculation.
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General conclusion

To find the B-coordinates of any vector v in R3, what we need to do is
multiply v on the left by the change of basis matrix from the standard
basis to B. This is the inverse of the matrix whose columns are the
elements of B (written in the standard basis).

Learning outcomes for Section 3.1

1 How to recognize when a set of n column vectors in Rn (or Fn)
forms a basis.

2 To recognize that elements of Rn (or Fn) have different coordinates
with respect to different bases.

3 To use the change of basis matrix to write the coordinates of any
vector in Fn with respect to a given basis.
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