
Example 1.2.15. If A =

�
1 −2 −3
2 0 4

�
, then AT =




1 2
−2 0
−3 4


.

For all relevant i and j, the (i, j) entry of AT is the (j, i) entry of A. If A is m × n, then the
products AAT and ATA always exist, and they are square matrices of size m × m and n × n
respectively. Moreover, they are symmetric. A square matrix is symmetric if it is equal to its own
transpose.

In the above example,

AAT =

�
14 −10

−10 20

�
, ATA =




5 −2 5
−2 4 6

5 6 25


 .

The following lemma describes how the transpose of a matrix product AB depends on the trans-
poses of A and B. The proof is included as an example of how demonstrations in matrix theory
often involve the close inspection and description of entries in particular positions. They are fussy
and not easy to read, but they often don’t involve anything more than careful attention to the de-
tails (all the information is contained in the subscripts!). It takes a bit of concentration to get used
to arguments like this and to write them (and read them), but you are encouraged to study this
one and satisfy yourself that you could produce it yourself if necessary.

Lemma 1.2.16. Let A and B be matrices for which the product AB is defined. Then (AB)T = BTAT .

The lemma is saying that the transpose of the product A is the product of the transposes of A
and B, but in the opposite order. To prove this, we analyse the entry in an arbitrary position (i, j)
of (AB)T , noting that this is the (j, i)-entry of AB.

Proof. Suppose that the sizes of A and B are m × p and p × n respectively. Choose an arbitrary
position (i, j) in (AB)T . The entry in this position is

(AB)Tij = (AB)ji

=

p�

k=1

AjkBki

=

p�

k=1

BT
ikA

T
kj

= (BTAT )ij.

If you are thinking about this proof, note that the third last line describes how the (j, i)-entry
of AB is assembled from Row j of A and Column i of B. The next line rewrites that in terms of
entries of BT and AT . Note that BT

ik = Bki and AT
kj = Ajk.

Exercise 1.2.17. Use Lemma 1.2.16 to explain why the matrices AAT and ATA are always symmetric.

1.3 Systems of Linear Equations

Consider the equation
2x+ y = 3.

This is an example of a linear equation in the variables x and y. As it stands, the statement “2x +
y = 3” is neither true nor untrue : it is just a statement involving the abstract symbols x and
y. However if we replace x and y with some particular pair of real numbers, the statement will
become either true or false. For example
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Putting x = 1, y = 1 gives 2x+ y = 2(1) + (1) = 3 : True
x = 1, y = 2 gives 2x+ y = 2(1) + (2) �= 3 : False
x = 0, y = 3 gives 2x+ y = 2(0) + (3) = 3 : True

Definition 1.3.1. A pair (x0,y0) of real numbers is a solution to the equation 2x+y = 3 if setting x = x0
and y = y0 makes the equation true; i,.e. if 2x0 + y0 = 3.

For example (1, 1) and (0, 3) are solutions - so are (2,−1), (3,−3), (−1, 5) and (−1/2, 4) (check
these).

However (1, 4) is not a solution since setting x = 1, y = 4 gives 2x+ y = 2(1) + 4 �= 3.
The set of all solutions to the equation is called its solution set. In tis example, the solution set

is a line in R2. In general, the solution set of the linear equation

a1X1 + · · ·+ anXn = b,

where b and the ai are real numbers (and the ai are not all zero) is an affine hyperplane in Rn;
geometrically it resembles a copy of Rn−1 inside Rn.

A collection of linear equations in the same n variables is referred to as a linear system or
system of linear equations. The solution set of the system is the subset of Rn consisting of those
elements that satify all of the equations in the system; it is the intersection of the solution sets of
the individual equations. For small systems in few variables, like the one below, the solution set
can be easily computed.

Example 1.3.2. Solve the linear system

2x + y = 3 (A)
4x + 3y = 4 (B)

�

Step 1: Multiply Equation (A) by 2 : 4x+ 2y = 6 (A2).
Any solution of (A2) is a solution of (A).

Step 2: Multiply Equation (B) by −1 : −4x− 3y = −4 (B2)
Any solution of (B2) is a solution of (B).

Step 3: Now add equations (A2) and (B2).

4x + 2y = 6
−4x − 3y = −4

−y = 2

Step 4: So y = −2 and the value of y in any simultaneous solution of (A) and (B) is −2 : Now we
can use (A) to find the value of x.

2x+ y = 3 and y = −2 =⇒ 2x+ (−2) = 3
=⇒ 2x = 5

=⇒ x =
5
2

So x = 5/2, y = −2 is the unique solution to this system of linear equations.
No surprises there, but this kind of “ad hoc” approach may not be so easy if we have a more

complicated system, involving a greater number of variables, or more equations. We will devise a
systematic approach, known as Gauss-Jordan elimination, for solving systems of linear equations.

1.3.1 Elementary Row Operations

Example 1.3.3. Find all solutions of the following system :

x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0
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In other (perhaps simpler) examples we were able to find solutions by simplifying the system
(perhaps by eliminating certain variables) through operations of the following types :

1. We could multiply one equation by a non-zero constant.

2. We could add one equation to another (for example in the hope of eliminating a variable
from the result).

A similar approach will work for Example 1.3.3 but with this and other harder examples it
may not always be clear how to proceed. We now develop a new technique both for describing
our system and for applying operations of the above types more systematically and with greater
clarity.

Back to Example 1.3.3: We associate a matrix to our system of equations.

x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0




1 2 −1 5
3 1 −2 9

−1 4 2 0




Equation 1
Equation 2
Equation 3

Note that the first row of this matrix contains as its four entries the coefficients of the variables
x,y, z, and the number appearing on the right-hand-side of Equation 1 of the system. Rows 2 and
3 correspond similarly to Equations 2 and 3. The columns of the matrix correspond (from left to
right) to the variables x, y, z and the right hand side of our system of equations.

Definition 1.3.4. The above matrix is called the augmented matrix of the system of equations in Example
1.3.3.

In solving systems of equations we are allowed to perform operations of the following types:

1. Multiply an equation by a non-zero constant.

2. Add one equation (or a non-zero constant multiple of one equation) to another equation.

These correspond to the following operations on the augmented matrix :

1. Multiply a row by a non-zero constant.

2. Add a multiple of one row to another row.

3. We also allow operations of the following type : Interchange two rows in the matrix (this
only amounts to writing down the equations of the system in a different order).

Definition 1.3.5. Operations of these three types are called Elementary Row Operations (ERO’s) on a
matrix.

We now describe how ERO’s on the augmented matrix can be used to solve the system of
Example 1.3.3. The following table describes how an ERO is performed at each step to produce a
new augmented matrix corresponding to a new (hopefully simpler) system.
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ERO Matrix System




1 2 −1 5
3 1 −2 9

−1 4 2 0




x + 2y − z = 5
3x + y − 2z = 9
−x + 4y + 2z = 0

1. R3 → R3 + R1




1 2 −1 5
3 1 −2 9
0 6 1 5




x + 2y − z = 5
3x + y − 2z = 9

6y + z = 5

2. R2 → R2 − 3R1




1 2 −1 5
0 −5 1 −6
0 6 1 5




x + 2y − z = 5
− 5y + z = −6

6y + z = 5

3. R2 → R2 + R3




1 2 −1 5
0 1 2 −1
0 6 1 5




x + 2y − z = 5
y + 2z = −1

6y + z = 5

4. R3 → R3 − 6R2




1 2 −1 5
0 1 2 −1
0 0 −11 11




x + 2y − z = 5
y + 2z = −1

−11z = 11

5. R3 ×
�
− 1

11

�



1 2 −1 5
0 1 2 −1
0 0 1 −1




x + 2y − z = 5 (A)
y + 2z = −1 (B)

z = −1 (C)

We have produced a new system of equations. This is easily solved :

Backsubstitution





(C) z = −1
(B) y = −1 − 2z =⇒ y = −1 − 2(−1) = 1
(A) x = 5 − 2y+ z =⇒ x = 5 − 2(1) + (−1) = 2

Solution : x = 2, y = 1, z = −1
You should check that this is a solution of the original system. It is the only solution both of the
final system and of the original one (and every intermediate one).
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NOTE : The matrix obtained in Step 5 above is in Row-Echelon Form. This means :

1. The first non-zero entry in each row is a 1 (called a Leading 1).

2. If a column contains a leading 1, then every entry of the column below the leading 1 is a
zero.

3. As we move downwards through the rows of the matrix, the leading 1’s move from left to
right.

4. Any rows consisting entirely of zeroes are grouped together at the bottom of the matrix.

NOTE : The process by which the augmented matrix of a system of equations is reduced to row-
echelon form is called Gaussian Elimination. In Example 1.3.3 the solution of the system was found
by Gaussian elimination with Backsubstitution.

General Strategy to Obtain a Row-Echelon Form

1. Get a 1 as the top left entry of the matrix.

2. Use this first leading 1 to “clear out” the rest of the first column, by adding suitable multiples
of Row 1 to subsequent rows.

3. If column 2 contains non-zero entries (other than in the first row), use ERO’s to get a 1 as
the second entry of Row 2. After this step the matrix will look like the following (where the
entries represented by stars may be anything):




1 ∗ ∗ . . . . . .
0 1 . . . . . . . . .
0 ∗ . . . . . . . . .
0 ∗ . . . . . . . . .
...

...
...

0 ∗ . . . . . . . . .




4. Now use this second leading 1 to “clear out” the rest of column 2 (below Row 2) by adding
suitable multiples of Row 2 to subsequent rows. After this step the matrix will look like the
following : 



1 ∗ ∗ . . . . . .
0 1 ∗ . . . . . .
0 0 ∗ . . . . . .
0 0 ∗ . . . . . .
...

...
...

...
...

0 0 ∗ . . . . . .




5. Now go to column 3. If it has non-zero entries (other than in the first two rows) get a 1 as the
third entry of Row 3. Use this third leading 1 to clear out the rest of Column 3, then proceed
to column 4. Continue until a row-echelon form is obtained.

Example 1.3.6. Let A be the matrix



1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2




Reduce A to row-echelon form.

Solution:
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1. Get a 1 as the first entry of Row 1. Done.

2. Use this first leading 1 to clear out column 1 as follows :

R2 → R2 − 2R1
R3 → R3 − R1




1 −1 −1 2 0
0 3 1 −2 8
0 −2 3 5 2




3. Get a leading 1 as the second entry of Row 2, for example as follows :

R2 → R2 + R3




1 −1 −1 2 0
0 1 4 3 10
0 −2 3 5 2




4. Use this leading 1 to clear out whatever appears below it in Column 2 :

R3 → R3 + 2R2




1 −1 −1 2 0
0 1 4 3 10
0 0 11 11 22




5. Get a leading 1 in Row 3 :

R3 × 1
11




1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2




This matrix is now in row-echelon form.
Remark Starting with a particular matrix, different sequences of ERO’s can lead to different row-
echelon forms. However, all have the same number of non-zero rows.

1.3.2 The Reduced Row-Echelon Form (RREF)

Definition 1.3.7. A matrix is in reduced row-echelon form (RREF) if

1. It is in row-echelon form, and

2. If a particular column contains a leading 1, then all other entries of that column are zeroes.

If we have a row-echelon form, we can use ERO’s to obtain a reduced row-echelon form (using
ERO’s to obtain a RREF is called Gauss-Jordan elimination).

Example 1.3.8. In Example 1.3.6, we obtained the following row-echelon form :




1 −1 −1 2 0
0 1 4 3 10
0 0 1 1 2


 (REF, not reduced REF)

To get a RREF from this REF :

1. Look for the leading 1 in Row 2 - it is in column 2. Eliminate the non-zero entry above this
leading 1 by adding a suitable multiple of Row 2 to Row 1.

R1 → R1 + R2




1 0 3 5 10
0 1 4 3 10
0 0 1 1 2




2. Look for the leading 1 in Row 3 - it is in column 3. Eliminate the non-zero entries above this
leading 1 by adding suitable multiples of Row 3 to Rows 1 and 2.

R1 → R1 − 3R3
R2 → R2 − 4R3




1 0 0 2 4
0 1 0 −1 2
0 0 1 1 2



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This matrix is in reduced row-echelon form. The technique outlined in this example will work in
general to obtain a RREF from a REF: you should practise with similar examples.
Remark: Different sequences of ERO’s on a matrix can lead to different row-echelon forms. How-
ever, the reduced row-echelon form of any matrix is unique.

1.3.3 Leading Variables and Free Variables

Example 1.3.9. Find the general solution of the following system :

x1 − x2 − x3 + 2x4 = 0 I
2x1 + x2 − x3 + 2x4 = 8 II
x1 − 3x2 + 2x3 + 7x4 = 2 III

SOLUTION :

1. Write down the augmented matrix of the system :

Eqn I
Eqn II
Eqn III




1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2




x1 x2 x3 x4

Note : This is the matrix of Example 1.3.6

2. Use Gauss-Jordan elimination to find a reduced row-echelon form from this augmented
matrix. We have already done this in Examples 1.3.6 and 1.3.8 :-

RREF :




1 0 0 2 4
0 1 0 −1 2
0 0 1 1 2




x1 x2 x3 x4

This matrix corresponds to a new system of equations:

x1 + 2x4 = 4 (A)
x2 − x4 = 2 (B)
x3 + x4 = 2 (C)

Remark : The RREF involves 3 leading 1’s, one in each of the columns corresponding to the
variables x1, x2 and x3. The column corresponding to x4 contains no leading 1.

Definition 1.3.10. The variables whose columns in the RREF contain leading 1’s are called leading
variables. A variable whose column in the RREF does not contain a leading 1 is called a free
variable.

So in this example the leading variables are x1, x2 and x3, and the variable x4 is free. What
does this distinction mean in terms of solutions of the system? The system corresponding
to the RREF can be rewritten as follows :

x1 = 4 − 2x4 (A)
x2 = 2 + x4 (B)
x3 = 2 − x4 (C)

i.e. this RREF tells us how the values of the leading variables x1, x2 and x3 depend on that
of the free variable x4 in a solution of the system. In a solution, the free variable x4 may
assume the value of any real number. However, once a value for x4 is chosen, values are
immediately assigned to x1, x2 and x3 by equations A, B and C above. For example
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(a) Choosing x4 = 0 gives x1 = 4− 2(0) = 4, x2 = 2+ (0) = 2, x3 = 2− (0) = 2. Check that
x1 = 4, x2 = 2, x3 = 2, x4 = 0 is a solution of the (original) system.

(b) Choosing x4 = 3 gives x1 = 4 − 2(3) = −2, x2 = 2 + (3) = 5, x3 = 2 − (3) = −1. Check
that x1 = −2, x2 = 5, x3 = −1, x4 = 3 is a solution of the (original) system.

Different choices of value for x4 will give different solutions of the system. The number of
solutions is infinite.

The general solution is usually described by the following type of notation. We assign the
parameter name t to the value of the variable x4 in a solution (so t may assume any real
number as its value). We then have

x1 = 4 − 2t, x2 = 2 + t, x3 = 2 − t, x4 = t; t ∈ R

or

General Solution : (x1, x2, x3, x4) = (4 − 2t, 2 + t, 2 − t, t); t ∈ R

This general solution describes the infinitely many solutions of the system : we get a partic-
ular solution by choosing a specific numerical value for t : this determines specific values
for x1, x2, x3 and x4.

Example 1.3.11. Solve the following system of linear equations :

x1 − x2 − x3 + 2x4 = 0 I
2x1 + x2 − x3 + 2x4 = 8 II
x1 − 3x2 + 2x3 + 7x4 = 2 III
x1 − x2 + x3 − x4 = −6 IV

Remark : The first three equations of this system comprise the system of equations of Example
1.3.9. The problem becomes : Can we find a solution of the system of Example 1.3.9 which is in
addition a solution of the equation x1 − x2 + x3 − x4 = −6 ?

SOLUTION We know that every simultaneous solution of the first three equations has the form

x1 = 4 − 2t, x2 = 2 + t, x3 = 2 − t, x4 = t,

where t can be any real number . Is there some choice of t for which the solution of the first three
equations is also a solution of the fourth? i.e. for which

x1 − x2 + x3 − x4 = −6 i.e. (4 − 2t)− (2 + t) + (2 − t)− t = −6

Solving for t gives

4 − 5t = −6
=⇒ −5t = 10

=⇒ t = 2

t = 2 : x1 = 4 − 2t = 4 − 2(2) = 0; x2 = 2 + t = 2 + 2 = 4; x3 = 2 − t = 2 − 2 = 0; x4 = t = 2

SOLUTION : x1 = 0, x2 = 4, x3 = 0, x4 = 2 (or (x1, x2, x3, x4) = (0, 4, 0, 2)).
This is the unique solution to the system in Example 1.3.11.

REMARKS:

1. To solve the system of Example 1.3.11 directly (without 1.3.9) we would write down the
augmented matrix : 



1 −1 −1 2 0
2 1 −1 2 8
1 −3 2 7 2
1 −1 1 −1 −6



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Check: Gauss-Jordan elimination gives the reduced row-echelon form :



1 0 0 0 0
0 1 0 0 4
0 0 1 0 0
0 0 0 1 2




which corresponds to the system

x1 = 0; x2 = 4; x3 = 0; x4 = 2

i.e. the unique solution is given exactly by the RREF. In this system, all four variables are
leading variables. This is always the case for a system which has a unique solution : that
each variable is a leading variable, i.e. corresponds in the RREF of the augmented matrix to
a column which contains a leading 1.

2. The system of Example 1.3.9, consisting of Equations 1,2 and 3 of that in Example 1.3.11, had
an infinite number of solutions. Adding the fourth equation in Example 1.3.11 pinpointed
exactly one of these infinitely many solutions.

1.3.4 Consistent and Inconsistent Systems

Example 1.3.12. Consider the following system :

3x + 2y − 5z = 4
x + y − 2z = 1

5x + 3y − 8z = 6

To find solutions, obtain a row-echelon form from the augmented matrix :



3 2 −5 4
1 1 −2 1
5 3 −8 6


 R1 ↔ R2

−→




1 1 −2 1
3 2 −5 4
5 3 −8 6




R2 → R2 − 3R1
−→

R3 → R3 − 5R1




1 1 −2 1
0 −1 1 1
0 −2 2 1


 R2 × (−1)

−→




1 1 −2 1
0 1 −1 −1
0 −2 2 1




R3 → R3 + 2R2
−→




1 1 −2 1
0 1 −1 −1
0 0 0 −1


 R3 × (−1)

−→




1 1 −2 1
0 1 −1 −1
0 0 0 1




(Row-Echelon Form)

The system of equations corresponding to this REF has as its third equation

0x+ 0y+ 0z = 1 i.e. 0 = 1

This equation clearly has no solutions - no assignment of numerical values to x,y and z will make
the value of the expression 0x + 0y + 0z equal to anything but zero. Hence the system has no
solutions.

Definition 1.3.13. A system of linear equations is called inconsistent if it has no solutions. A system
which has a solution is called consistent.

If a system is inconsistent, a REF obtained from its augmented matrix will include a row of the
form 0 0 0 . . . 0 1, i.e. will have a leading 1 in its rightmost column. Such a row corresponds to an
equation of the form 0x1 + 0x2 + · · ·+ 0xn = 1, which certainly has no solution.
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Example 1.3.14.

(a) Find the unique value of t for which the following system has a solution.

−x1 + x3 − x4 = 3
2x1 + 2x2 − x3 − 7x4 = 1
4x1 − x2 − 9x3 − 5x4 = t
3x1 − x2 − 8x3 − 6x4 = 1

SOLUTION: First write down the augmented matrix and begin Gauss-Jordan elimination.




−1 0 1 −1 3
2 2 −1 −7 1
4 −1 −9 −5 t
3 −1 −8 −6 1




R1 × (−1)
−→




1 0 −1 1 −3
2 2 −1 −7 1
4 −1 −9 −5 t
3 −1 −8 −6 1




R2 → R2 − 2R1
R3 → R3 − 4R1

−→
R4 → R4 − 3R1




1 0 −1 1 −3
0 2 1 −9 7
0 −1 −5 −9 t+ 12
0 −1 −5 −9 10




R3 → R3 − R4
−→




1 0 −1 1 −3
0 2 1 −9 7
0 0 0 0 t+ 2
0 −1 −5 −9 10




From the third row of this matrix we can see that the system can be consistent only if t + 2 = 0.
i.e. only if t = −2.

(b) Find the general solution of this system for this value of t.
SOLUTION: Set t = −2 and continue with the Gaussian elimination. We omit the third row, which
consists fully of zeroes and carries no information.




1 0 −1 1 −3
0 2 1 −9 7
0 −1 −5 −9 10




R4 × (−1)
−→

R3 ↔ R4




1 0 −1 1 −3
0 1 5 9 −10
0 2 1 −9 7




R3 → R3 − 2R2
−→




1 0 −1 1 −3
0 1 5 9 −10
0 0 −9 −27 27


 R3 × (− 1

9 )
−→




1 0 −1 1 −3
0 1 5 9 −10
0 0 1 3 −3




R1 → R1 + R3
−→

R2 → R2 + 5R3




1 0 0 4 −6
0 1 0 −6 5
0 0 1 3 −3




Having reached a reduced row-echelon form, we can see that the variables x1, x2 and x3 are
leading variables, and the variable x4 is free. We have from the RREF

x1 = −6 − 4x4, x2 = 5 + 6x4, x3 = −3 − 3x4.

If we assign the parameter name s to the value of the free variable x4 in a solution of the system,
we can write the general solution as

(x1, x2, x3, x4) = (−6 − 4s, 5 + 6s,−3 − 3s, s), s ∈ R.

Summary of Possible Outcomes when Solving a System of Linear Equations:

1. The system may be inconsistent. This happens if a REF obtained from the augmented matrix
has a leading 1 in its rightmost column.

2. The system may be consistent. In this case one of the following occurs :
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(a) There may be a unique solution. This will happen if all variables are leading variables,
i.e. every column except the rightmost one in a REF obtained from the augmented
matrix has a leading 1. In the case the reduced row-echelon form obtained from the
augmented matrix will have the following form :




1 0 0 . . . 0 ∗
0 1 0 . . . 0 ∗
0 0 1 . . . 0 ∗
...

...
...

. . .
...

...
0 0 0 . . . 1 ∗




with possibly some additional rows full of zeroes at the bottom. The unique solution
can be read from the right-hand column.
NOTE: If a system of equations has a unique solution, the number of equations must
be at least equal to the number of variables (since the augmented matrix must have
enough rows to accommodate a leading 1 for every variable).

(b) There may be infinitely many solutions. This happens if the system is consistent but
at least one of the variables is free. In this case the number of leading 1s in the row
echelon form is less than the number of variables in the system.
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